模拟和研究总电离剂量对 FeFET 的影响

IF 2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Munazza Sayed;Kai Ni;Hussam Amrouch
{"title":"模拟和研究总电离剂量对 FeFET 的影响","authors":"Munazza Sayed;Kai Ni;Hussam Amrouch","doi":"10.1109/JXCDC.2023.3325706","DOIUrl":null,"url":null,"abstract":"This article presents a novel, simulation-based study of the long-term impact of X-ray irradiation on the ferroelectric field effect transistor (FeFET). The analysis is conducted through accurate multiphysics technology CAD (TCAD) simulations and radiation impact on the two FeFET memory states—high-voltage threshold (HVT) and low-voltage threshold (LVT)—is studied. For both the states, we investigate the deterioration of device characteristics, such as threshold voltage shift (\n<inline-formula> <tex-math>$\\Delta V_{\\text {th}}$ </tex-math></inline-formula>\n) and memory window (MW) degradation, resulting from total ionizing dose (TID) exposure between 10 krad/s and 3 Mrad/s. At a dose rate of 10 krad/s, the FeFET is adequately radiation hardened for both HVT and LVT due to negligible change in MW from the baseline, unradiated case. At a dose rate of 3 Mad/s, an MW degradation of 40% is observed, and the greatest contributor is identified as the HVT state, which shows a 0.5-V increase in \n<inline-formula> <tex-math>$\\Delta V_{\\text {th}}$ </tex-math></inline-formula>\n, compared with 0.08 V \n<inline-formula> <tex-math>$\\Delta V_{\\text {th}}$ </tex-math></inline-formula>\n for LVT at the same dose rate. The difference in radiation responses for HVT and LVT at the same TID is investigated and attributed to the impact of the depolarization electric field (\n<inline-formula> <tex-math>$E_{\\text {dep}}$ </tex-math></inline-formula>\n) on the transport of electrons and holes. Consequently, holes form oxide traps that occupy deeper energy levels for HVT compared with LVT, which underlies the \n<inline-formula> <tex-math>$V_{\\text {th}}$ </tex-math></inline-formula>\n shift and MW degradation. The resultant \n<inline-formula> <tex-math>$I_{d}$ </tex-math></inline-formula>\n–\n<inline-formula> <tex-math>$V_{g}$ </tex-math></inline-formula>\n characteristics are in good agreement with the experimental data. Our analysis highlights that the HVT state is sensitive to TID relative to LVT.","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10288360","citationCount":"0","resultStr":"{\"title\":\"Modeling and Investigating Total Ionizing Dose Impact on FeFET\",\"authors\":\"Munazza Sayed;Kai Ni;Hussam Amrouch\",\"doi\":\"10.1109/JXCDC.2023.3325706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a novel, simulation-based study of the long-term impact of X-ray irradiation on the ferroelectric field effect transistor (FeFET). The analysis is conducted through accurate multiphysics technology CAD (TCAD) simulations and radiation impact on the two FeFET memory states—high-voltage threshold (HVT) and low-voltage threshold (LVT)—is studied. For both the states, we investigate the deterioration of device characteristics, such as threshold voltage shift (\\n<inline-formula> <tex-math>$\\\\Delta V_{\\\\text {th}}$ </tex-math></inline-formula>\\n) and memory window (MW) degradation, resulting from total ionizing dose (TID) exposure between 10 krad/s and 3 Mrad/s. At a dose rate of 10 krad/s, the FeFET is adequately radiation hardened for both HVT and LVT due to negligible change in MW from the baseline, unradiated case. At a dose rate of 3 Mad/s, an MW degradation of 40% is observed, and the greatest contributor is identified as the HVT state, which shows a 0.5-V increase in \\n<inline-formula> <tex-math>$\\\\Delta V_{\\\\text {th}}$ </tex-math></inline-formula>\\n, compared with 0.08 V \\n<inline-formula> <tex-math>$\\\\Delta V_{\\\\text {th}}$ </tex-math></inline-formula>\\n for LVT at the same dose rate. The difference in radiation responses for HVT and LVT at the same TID is investigated and attributed to the impact of the depolarization electric field (\\n<inline-formula> <tex-math>$E_{\\\\text {dep}}$ </tex-math></inline-formula>\\n) on the transport of electrons and holes. Consequently, holes form oxide traps that occupy deeper energy levels for HVT compared with LVT, which underlies the \\n<inline-formula> <tex-math>$V_{\\\\text {th}}$ </tex-math></inline-formula>\\n shift and MW degradation. The resultant \\n<inline-formula> <tex-math>$I_{d}$ </tex-math></inline-formula>\\n–\\n<inline-formula> <tex-math>$V_{g}$ </tex-math></inline-formula>\\n characteristics are in good agreement with the experimental data. Our analysis highlights that the HVT state is sensitive to TID relative to LVT.\",\"PeriodicalId\":54149,\"journal\":{\"name\":\"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10288360\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10288360/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10288360/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一项基于模拟的新研究,研究 X 射线辐照对铁电场效应晶体管 (FeFET) 的长期影响。分析是通过精确的多物理场技术 CAD(TCAD)仿真进行的,研究了辐射对两种 FeFET 存储状态--高电压阈值(HVT)和低电压阈值(LVT)--的影响。针对这两种状态,我们研究了 10 krad/s 和 3 Mrad/s 的总电离剂量(TID)照射导致的器件特性恶化,如阈值电压偏移($\Delta V_{text {th}}$)和存储器窗口(MW)退化。在剂量率为 10 krad/s 时,由于 MW 与基线、无辐照情况下的变化可以忽略不计,FeFET 在 HVT 和 LVT 方面都得到了充分的辐照硬化。在剂量率为 3 Mad/s 时,观察到 40% 的功率衰减,其中最大的贡献者是 HVT 状态,其 $\Delta V_{text {th}}$ 增加了 0.5 V,而在相同剂量率下,LVT 状态的 $\Delta V_{text {th}}$ 为 0.08 V。研究发现,在相同的 TID 下,HVT 和 LVT 的辐射响应存在差异,这归因于去极化电场($E_{\text {dep}}$)对电子和空穴传输的影响。因此,与 LVT 相比,空穴在 HVT 中形成了占据更深能级的氧化物陷阱,这就是 $V_{\text {th}}$ 移动和功率衰减的原因。由此得出的 $I_{d}$ - $V_{g}$ 特性与实验数据非常吻合。我们的分析突出表明,相对于 LVT,HVT 状态对 TID 更为敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling and Investigating Total Ionizing Dose Impact on FeFET
This article presents a novel, simulation-based study of the long-term impact of X-ray irradiation on the ferroelectric field effect transistor (FeFET). The analysis is conducted through accurate multiphysics technology CAD (TCAD) simulations and radiation impact on the two FeFET memory states—high-voltage threshold (HVT) and low-voltage threshold (LVT)—is studied. For both the states, we investigate the deterioration of device characteristics, such as threshold voltage shift ( $\Delta V_{\text {th}}$ ) and memory window (MW) degradation, resulting from total ionizing dose (TID) exposure between 10 krad/s and 3 Mrad/s. At a dose rate of 10 krad/s, the FeFET is adequately radiation hardened for both HVT and LVT due to negligible change in MW from the baseline, unradiated case. At a dose rate of 3 Mad/s, an MW degradation of 40% is observed, and the greatest contributor is identified as the HVT state, which shows a 0.5-V increase in $\Delta V_{\text {th}}$ , compared with 0.08 V $\Delta V_{\text {th}}$ for LVT at the same dose rate. The difference in radiation responses for HVT and LVT at the same TID is investigated and attributed to the impact of the depolarization electric field ( $E_{\text {dep}}$ ) on the transport of electrons and holes. Consequently, holes form oxide traps that occupy deeper energy levels for HVT compared with LVT, which underlies the $V_{\text {th}}$ shift and MW degradation. The resultant $I_{d}$ $V_{g}$ characteristics are in good agreement with the experimental data. Our analysis highlights that the HVT state is sensitive to TID relative to LVT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
4.20%
发文量
11
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信