{"title":"用于离线强化学习的预估状态-行为平衡权值","authors":"Jiayi Wang, Zhengling Qi, Raymond K. W. Wong","doi":"10.1214/23-aos2302","DOIUrl":null,"url":null,"abstract":"Off-policy evaluation is considered a fundamental and challenging problem in reinforcement learning (RL). This paper focuses on value estimation of a target policy based on pre-collected data generated from a possibly different policy, under the framework of infinite-horizon Markov decision processes. Motivated by the recently developed marginal importance sampling method in RL and the covariate balancing idea in causal inference, we propose a novel estimator with approximately projected state-action balancing weights for the policy value estimation. We obtain the convergence rate of these weights, and show that the proposed value estimator is asymptotically normal under technical conditions. In terms of asymptotics, our results scale with both the number of trajectories and the number of decision points at each trajectory. As such, consistency can still be achieved with a limited number of subjects when the number of decision points diverges. In addition, we develop a necessary and sufficient condition for establishing the well-posedness of the operator that relates to the nonparametric Q-function estimation in the off-policy setting, which characterizes the difficulty of Q-function estimation and may be of independent interest. Numerical experiments demonstrate the promising performance of our proposed estimator.","PeriodicalId":8032,"journal":{"name":"Annals of Statistics","volume":"15 1","pages":"0"},"PeriodicalIF":3.2000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Projected state-action balancing weights for offline reinforcement learning\",\"authors\":\"Jiayi Wang, Zhengling Qi, Raymond K. W. Wong\",\"doi\":\"10.1214/23-aos2302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Off-policy evaluation is considered a fundamental and challenging problem in reinforcement learning (RL). This paper focuses on value estimation of a target policy based on pre-collected data generated from a possibly different policy, under the framework of infinite-horizon Markov decision processes. Motivated by the recently developed marginal importance sampling method in RL and the covariate balancing idea in causal inference, we propose a novel estimator with approximately projected state-action balancing weights for the policy value estimation. We obtain the convergence rate of these weights, and show that the proposed value estimator is asymptotically normal under technical conditions. In terms of asymptotics, our results scale with both the number of trajectories and the number of decision points at each trajectory. As such, consistency can still be achieved with a limited number of subjects when the number of decision points diverges. In addition, we develop a necessary and sufficient condition for establishing the well-posedness of the operator that relates to the nonparametric Q-function estimation in the off-policy setting, which characterizes the difficulty of Q-function estimation and may be of independent interest. Numerical experiments demonstrate the promising performance of our proposed estimator.\",\"PeriodicalId\":8032,\"journal\":{\"name\":\"Annals of Statistics\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/23-aos2302\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/23-aos2302","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Projected state-action balancing weights for offline reinforcement learning
Off-policy evaluation is considered a fundamental and challenging problem in reinforcement learning (RL). This paper focuses on value estimation of a target policy based on pre-collected data generated from a possibly different policy, under the framework of infinite-horizon Markov decision processes. Motivated by the recently developed marginal importance sampling method in RL and the covariate balancing idea in causal inference, we propose a novel estimator with approximately projected state-action balancing weights for the policy value estimation. We obtain the convergence rate of these weights, and show that the proposed value estimator is asymptotically normal under technical conditions. In terms of asymptotics, our results scale with both the number of trajectories and the number of decision points at each trajectory. As such, consistency can still be achieved with a limited number of subjects when the number of decision points diverges. In addition, we develop a necessary and sufficient condition for establishing the well-posedness of the operator that relates to the nonparametric Q-function estimation in the off-policy setting, which characterizes the difficulty of Q-function estimation and may be of independent interest. Numerical experiments demonstrate the promising performance of our proposed estimator.
期刊介绍:
The Annals of Statistics aim to publish research papers of highest quality reflecting the many facets of contemporary statistics. Primary emphasis is placed on importance and originality, not on formalism. The journal aims to cover all areas of statistics, especially mathematical statistics and applied & interdisciplinary statistics. Of course many of the best papers will touch on more than one of these general areas, because the discipline of statistics has deep roots in mathematics, and in substantive scientific fields.