{"title":"非平稳时间序列的图形模型","authors":"Sumanta Basu, Suhasini Subba Rao","doi":"10.1214/22-aos2205","DOIUrl":null,"url":null,"abstract":"We propose NonStGM, a general nonparametric graphical modeling framework, for studying dynamic associations among the components of a nonstationary multivariate time series. It builds on the framework of Gaussian graphical models (GGM) and stationary time series graphical models (StGM) and complements existing works on parametric graphical models based on change point vector autoregressions (VAR). Analogous to StGM, the proposed framework captures conditional noncorrelations (both intertemporal and contemporaneous) in the form of an undirected graph. In addition, to describe the more nuanced nonstationary relationships among the components of the time series, we introduce the new notion of conditional nonstationarity/stationarity and incorporate it within the graph. This can be used to search for small subnetworks that serve as the “source” of nonstationarity in a large system. We explicitly connect conditional noncorrelation and stationarity between and within components of the multivariate time series to zero and Toeplitz embeddings of an infinite-dimensional inverse covariance operator. In the Fourier domain, conditional stationarity and noncorrelation relationships in the inverse covariance operator are encoded with a specific sparsity structure of its integral kernel operator. We show that these sparsity patterns can be recovered from finite-length time series by nodewise regression of discrete Fourier transforms (DFT) across different Fourier frequencies. We demonstrate the feasibility of learning NonStGM structure from data using simulation studies.","PeriodicalId":8032,"journal":{"name":"Annals of Statistics","volume":"60 1","pages":"0"},"PeriodicalIF":3.2000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Graphical models for nonstationary time series\",\"authors\":\"Sumanta Basu, Suhasini Subba Rao\",\"doi\":\"10.1214/22-aos2205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose NonStGM, a general nonparametric graphical modeling framework, for studying dynamic associations among the components of a nonstationary multivariate time series. It builds on the framework of Gaussian graphical models (GGM) and stationary time series graphical models (StGM) and complements existing works on parametric graphical models based on change point vector autoregressions (VAR). Analogous to StGM, the proposed framework captures conditional noncorrelations (both intertemporal and contemporaneous) in the form of an undirected graph. In addition, to describe the more nuanced nonstationary relationships among the components of the time series, we introduce the new notion of conditional nonstationarity/stationarity and incorporate it within the graph. This can be used to search for small subnetworks that serve as the “source” of nonstationarity in a large system. We explicitly connect conditional noncorrelation and stationarity between and within components of the multivariate time series to zero and Toeplitz embeddings of an infinite-dimensional inverse covariance operator. In the Fourier domain, conditional stationarity and noncorrelation relationships in the inverse covariance operator are encoded with a specific sparsity structure of its integral kernel operator. We show that these sparsity patterns can be recovered from finite-length time series by nodewise regression of discrete Fourier transforms (DFT) across different Fourier frequencies. We demonstrate the feasibility of learning NonStGM structure from data using simulation studies.\",\"PeriodicalId\":8032,\"journal\":{\"name\":\"Annals of Statistics\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/22-aos2205\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/22-aos2205","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
We propose NonStGM, a general nonparametric graphical modeling framework, for studying dynamic associations among the components of a nonstationary multivariate time series. It builds on the framework of Gaussian graphical models (GGM) and stationary time series graphical models (StGM) and complements existing works on parametric graphical models based on change point vector autoregressions (VAR). Analogous to StGM, the proposed framework captures conditional noncorrelations (both intertemporal and contemporaneous) in the form of an undirected graph. In addition, to describe the more nuanced nonstationary relationships among the components of the time series, we introduce the new notion of conditional nonstationarity/stationarity and incorporate it within the graph. This can be used to search for small subnetworks that serve as the “source” of nonstationarity in a large system. We explicitly connect conditional noncorrelation and stationarity between and within components of the multivariate time series to zero and Toeplitz embeddings of an infinite-dimensional inverse covariance operator. In the Fourier domain, conditional stationarity and noncorrelation relationships in the inverse covariance operator are encoded with a specific sparsity structure of its integral kernel operator. We show that these sparsity patterns can be recovered from finite-length time series by nodewise regression of discrete Fourier transforms (DFT) across different Fourier frequencies. We demonstrate the feasibility of learning NonStGM structure from data using simulation studies.
期刊介绍:
The Annals of Statistics aim to publish research papers of highest quality reflecting the many facets of contemporary statistics. Primary emphasis is placed on importance and originality, not on formalism. The journal aims to cover all areas of statistics, especially mathematical statistics and applied & interdisciplinary statistics. Of course many of the best papers will touch on more than one of these general areas, because the discipline of statistics has deep roots in mathematics, and in substantive scientific fields.