{"title":"用集合经验模态分解、奇异值分解和移动平均预测真卫星一氧化碳数据","authors":"Sameer Poongadan, M. C. Lineesh","doi":"10.1080/02664763.2023.2277115","DOIUrl":null,"url":null,"abstract":"AbstractThe forecasting of carbon monoxide in the atmosphere is essential as it causes the pollution of the atmosphere and hence severe health problems for humans. This study proposes a time-series prognosis EEMD-SVD-MA technique which incorporates Ensemble Empirical Mode Decomposition, Singular Value Decomposition and Moving Average, to predict the prospects of carbon monoxide data taken from the Indian region. The collected data are non-linear. The technique can be applied for non-stationary and non-linear data. In this approach, there are three levels: EEMD level, SVD level and MA level. The first level deploys EEMD to fragment data series into a limited number of Intrinsic Mode Function (IMF) components along with a residue. To denoise each IMF component, SVD is deployed in the second level. In the third level, each denoised IMF component is predicted by MA. The future values of the original data are obtained by adding all the predicted series of the components. In this study, we proposed two variants of the model: EEMD-SVD-MA(3) and EEMD-SVD-MA(4) and compared the results with other forecasting techniques, namely LSTM (Long Short Term Memory network), EMD-LSTM, EMD-MA, EEMD-MA and CEEMDAN-MA. The results show that the proposed EEMD-SVD-MA model is more efficient than other models.Keywords: Intrinsic mode functionempirical mode decompositionensemble empirical mode decompositionsingular value decompositionmoving averagelong short term memory networkMathematics Subject Classifications: 37M1068T0715A18 AcknowledgmentsThe author's deep appreciation goes out to NASA's teams for AIRS/AMSU, MODIS and MOPPIT data for tropospheric CO.Disclosure statementNo potential conflict of interest was reported by the author(s).","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forecasting of the true satellite carbon monoxide data with ensemble empirical mode decomposition, singular value decomposition and moving average\",\"authors\":\"Sameer Poongadan, M. C. Lineesh\",\"doi\":\"10.1080/02664763.2023.2277115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractThe forecasting of carbon monoxide in the atmosphere is essential as it causes the pollution of the atmosphere and hence severe health problems for humans. This study proposes a time-series prognosis EEMD-SVD-MA technique which incorporates Ensemble Empirical Mode Decomposition, Singular Value Decomposition and Moving Average, to predict the prospects of carbon monoxide data taken from the Indian region. The collected data are non-linear. The technique can be applied for non-stationary and non-linear data. In this approach, there are three levels: EEMD level, SVD level and MA level. The first level deploys EEMD to fragment data series into a limited number of Intrinsic Mode Function (IMF) components along with a residue. To denoise each IMF component, SVD is deployed in the second level. In the third level, each denoised IMF component is predicted by MA. The future values of the original data are obtained by adding all the predicted series of the components. In this study, we proposed two variants of the model: EEMD-SVD-MA(3) and EEMD-SVD-MA(4) and compared the results with other forecasting techniques, namely LSTM (Long Short Term Memory network), EMD-LSTM, EMD-MA, EEMD-MA and CEEMDAN-MA. The results show that the proposed EEMD-SVD-MA model is more efficient than other models.Keywords: Intrinsic mode functionempirical mode decompositionensemble empirical mode decompositionsingular value decompositionmoving averagelong short term memory networkMathematics Subject Classifications: 37M1068T0715A18 AcknowledgmentsThe author's deep appreciation goes out to NASA's teams for AIRS/AMSU, MODIS and MOPPIT data for tropospheric CO.Disclosure statementNo potential conflict of interest was reported by the author(s).\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/02664763.2023.2277115\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02664763.2023.2277115","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Forecasting of the true satellite carbon monoxide data with ensemble empirical mode decomposition, singular value decomposition and moving average
AbstractThe forecasting of carbon monoxide in the atmosphere is essential as it causes the pollution of the atmosphere and hence severe health problems for humans. This study proposes a time-series prognosis EEMD-SVD-MA technique which incorporates Ensemble Empirical Mode Decomposition, Singular Value Decomposition and Moving Average, to predict the prospects of carbon monoxide data taken from the Indian region. The collected data are non-linear. The technique can be applied for non-stationary and non-linear data. In this approach, there are three levels: EEMD level, SVD level and MA level. The first level deploys EEMD to fragment data series into a limited number of Intrinsic Mode Function (IMF) components along with a residue. To denoise each IMF component, SVD is deployed in the second level. In the third level, each denoised IMF component is predicted by MA. The future values of the original data are obtained by adding all the predicted series of the components. In this study, we proposed two variants of the model: EEMD-SVD-MA(3) and EEMD-SVD-MA(4) and compared the results with other forecasting techniques, namely LSTM (Long Short Term Memory network), EMD-LSTM, EMD-MA, EEMD-MA and CEEMDAN-MA. The results show that the proposed EEMD-SVD-MA model is more efficient than other models.Keywords: Intrinsic mode functionempirical mode decompositionensemble empirical mode decompositionsingular value decompositionmoving averagelong short term memory networkMathematics Subject Classifications: 37M1068T0715A18 AcknowledgmentsThe author's deep appreciation goes out to NASA's teams for AIRS/AMSU, MODIS and MOPPIT data for tropospheric CO.Disclosure statementNo potential conflict of interest was reported by the author(s).
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.