{"title":"复生成算子与平面自同构函数","authors":"Ghanmi Allal, Imlal Lahcen","doi":"10.1007/s11040-023-09471-8","DOIUrl":null,"url":null,"abstract":"<div><p>We provide a concrete characterization of the poly-analytic planar automorphic functions, a special class of non analytic planar automorphic functions with respect to the Appell–Humbert automorphy factor, arising as images of the holomorphic ones by means of the creation differential operator. This is closely connected to the spectral theory of the magnetic Laplacian on the complex plane.</p></div>","PeriodicalId":694,"journal":{"name":"Mathematical Physics, Analysis and Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complex Creation Operator and Planar Automorphic Functions\",\"authors\":\"Ghanmi Allal, Imlal Lahcen\",\"doi\":\"10.1007/s11040-023-09471-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We provide a concrete characterization of the poly-analytic planar automorphic functions, a special class of non analytic planar automorphic functions with respect to the Appell–Humbert automorphy factor, arising as images of the holomorphic ones by means of the creation differential operator. This is closely connected to the spectral theory of the magnetic Laplacian on the complex plane.</p></div>\",\"PeriodicalId\":694,\"journal\":{\"name\":\"Mathematical Physics, Analysis and Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Physics, Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11040-023-09471-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Physics, Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s11040-023-09471-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Complex Creation Operator and Planar Automorphic Functions
We provide a concrete characterization of the poly-analytic planar automorphic functions, a special class of non analytic planar automorphic functions with respect to the Appell–Humbert automorphy factor, arising as images of the holomorphic ones by means of the creation differential operator. This is closely connected to the spectral theory of the magnetic Laplacian on the complex plane.
期刊介绍:
MPAG is a peer-reviewed journal organized in sections. Each section is editorially independent and provides a high forum for research articles in the respective areas.
The entire editorial board commits itself to combine the requirements of an accurate and fast refereeing process.
The section on Probability and Statistical Physics focuses on probabilistic models and spatial stochastic processes arising in statistical physics. Examples include: interacting particle systems, non-equilibrium statistical mechanics, integrable probability, random graphs and percolation, critical phenomena and conformal theories. Applications of probability theory and statistical physics to other areas of mathematics, such as analysis (stochastic pde''s), random geometry, combinatorial aspects are also addressed.
The section on Quantum Theory publishes research papers on developments in geometry, probability and analysis that are relevant to quantum theory. Topics that are covered in this section include: classical and algebraic quantum field theories, deformation and geometric quantisation, index theory, Lie algebras and Hopf algebras, non-commutative geometry, spectral theory for quantum systems, disordered quantum systems (Anderson localization, quantum diffusion), many-body quantum physics with applications to condensed matter theory, partial differential equations emerging from quantum theory, quantum lattice systems, topological phases of matter, equilibrium and non-equilibrium quantum statistical mechanics, multiscale analysis, rigorous renormalisation group.