引线框架-环氧成型复合材料粘接:微观力学驱动的研究

Alessandro Della Porta, S. Mariani, M. Rovitto, L. Andena, Samuele Zalaffi
{"title":"引线框架-环氧成型复合材料粘接:微观力学驱动的研究","authors":"Alessandro Della Porta, S. Mariani, M. Rovitto, L. Andena, Samuele Zalaffi","doi":"10.1109/EuroSimE56861.2023.10100792","DOIUrl":null,"url":null,"abstract":"A typical reliability issue of electronic packages is the decohesion between the encapsulant material, the Epoxy Molding Compound (EMC), and the leadframe. As the EMC is a microstructured composite material, the present computational study is aimed at understanding the influence of the EMC microstructure on the macroscopic mechanical and adhesive properties. Statistical Volume Elements (SVEs) are employed to this purpose, with a random arrangement of spherical particles of varying diameter to represent the filler volume fraction and size distribution. Mechanical properties of the neat polymeric matrix are obtained from experimental data relevant to the EMC through an inverse homogenization scheme, and the effect of a varying filler content is investigated. Finally, microstructural effects on the adhesion are studied with micro-scale models of the leadframe-matrix-filler system, accounting for the leadframe-matrix adhesion through a cohesive approach. The effects of filler content, substrate roughness, and intrinsic adhesive properties on the effective traction-separation law are assessed.","PeriodicalId":425592,"journal":{"name":"2023 24th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Leadframe-Epoxy Moulding Compound Adhesion: a Micromechanics-driven Investigation\",\"authors\":\"Alessandro Della Porta, S. Mariani, M. Rovitto, L. Andena, Samuele Zalaffi\",\"doi\":\"10.1109/EuroSimE56861.2023.10100792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A typical reliability issue of electronic packages is the decohesion between the encapsulant material, the Epoxy Molding Compound (EMC), and the leadframe. As the EMC is a microstructured composite material, the present computational study is aimed at understanding the influence of the EMC microstructure on the macroscopic mechanical and adhesive properties. Statistical Volume Elements (SVEs) are employed to this purpose, with a random arrangement of spherical particles of varying diameter to represent the filler volume fraction and size distribution. Mechanical properties of the neat polymeric matrix are obtained from experimental data relevant to the EMC through an inverse homogenization scheme, and the effect of a varying filler content is investigated. Finally, microstructural effects on the adhesion are studied with micro-scale models of the leadframe-matrix-filler system, accounting for the leadframe-matrix adhesion through a cohesive approach. The effects of filler content, substrate roughness, and intrinsic adhesive properties on the effective traction-separation law are assessed.\",\"PeriodicalId\":425592,\"journal\":{\"name\":\"2023 24th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 24th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EuroSimE56861.2023.10100792\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 24th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EuroSimE56861.2023.10100792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

电子封装的一个典型的可靠性问题是封装材料、环氧成型化合物(EMC)和引线框架之间的脱粘。由于电磁兼容材料是一种微结构复合材料,本计算研究旨在了解电磁兼容材料微观结构对宏观力学性能和粘接性能的影响。采用统计体积元(SVEs)来实现这一目的,随机排列不同直径的球形颗粒来表示填料的体积分数和尺寸分布。利用电磁兼容相关的实验数据,通过反均质方案获得了整齐聚合物基体的力学性能,并研究了填料含量的变化对其力学性能的影响。最后,利用引线框架-基质-填料体系的微观尺度模型研究了微观结构对粘结性的影响,并通过内聚方法对引线框架-基质的粘结性进行了计算。评估了填料含量、基材粗糙度和内在粘附性能对有效牵引-分离规律的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leadframe-Epoxy Moulding Compound Adhesion: a Micromechanics-driven Investigation
A typical reliability issue of electronic packages is the decohesion between the encapsulant material, the Epoxy Molding Compound (EMC), and the leadframe. As the EMC is a microstructured composite material, the present computational study is aimed at understanding the influence of the EMC microstructure on the macroscopic mechanical and adhesive properties. Statistical Volume Elements (SVEs) are employed to this purpose, with a random arrangement of spherical particles of varying diameter to represent the filler volume fraction and size distribution. Mechanical properties of the neat polymeric matrix are obtained from experimental data relevant to the EMC through an inverse homogenization scheme, and the effect of a varying filler content is investigated. Finally, microstructural effects on the adhesion are studied with micro-scale models of the leadframe-matrix-filler system, accounting for the leadframe-matrix adhesion through a cohesive approach. The effects of filler content, substrate roughness, and intrinsic adhesive properties on the effective traction-separation law are assessed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信