基于地标的人脸去识别方法

Hyeonwoo Kim, Junsuk Lee, Eenjun Hwang
{"title":"基于地标的人脸去识别方法","authors":"Hyeonwoo Kim, Junsuk Lee, Eenjun Hwang","doi":"10.1109/HSI55341.2022.9869487","DOIUrl":null,"url":null,"abstract":"Due to the spread of various information and communication technologies, a huge amount of images are produced and shared for diverse purposes. Several de-identification techniques for photos, such as pixelation, blur, and mask, are routinely used in light of recent worries about the growing number of privacy leakages. However, due to the low image quality and loss of many facial features, these de-identified images are not suitable for use in applications such as training models that require a lot of high-quality data. Therefore, in this paper, we propose a new face de-identification method focusing only on facial regions essential for personal identification. By generating facial landmarks differently from the original person using masking and generative adversarial networks-based inpainting, our method can perform de-identification efficiently. To demonstrate the performance of our proposed scheme, we conducted quantitative and qualitative evaluations using an open dataset. We show that our proposed scheme outperforms other de-identification methods.","PeriodicalId":282607,"journal":{"name":"2022 15th International Conference on Human System Interaction (HSI)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Face De-identification Scheme Using Landmark-Based Inpainting\",\"authors\":\"Hyeonwoo Kim, Junsuk Lee, Eenjun Hwang\",\"doi\":\"10.1109/HSI55341.2022.9869487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the spread of various information and communication technologies, a huge amount of images are produced and shared for diverse purposes. Several de-identification techniques for photos, such as pixelation, blur, and mask, are routinely used in light of recent worries about the growing number of privacy leakages. However, due to the low image quality and loss of many facial features, these de-identified images are not suitable for use in applications such as training models that require a lot of high-quality data. Therefore, in this paper, we propose a new face de-identification method focusing only on facial regions essential for personal identification. By generating facial landmarks differently from the original person using masking and generative adversarial networks-based inpainting, our method can perform de-identification efficiently. To demonstrate the performance of our proposed scheme, we conducted quantitative and qualitative evaluations using an open dataset. We show that our proposed scheme outperforms other de-identification methods.\",\"PeriodicalId\":282607,\"journal\":{\"name\":\"2022 15th International Conference on Human System Interaction (HSI)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 15th International Conference on Human System Interaction (HSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HSI55341.2022.9869487\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 15th International Conference on Human System Interaction (HSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HSI55341.2022.9869487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于各种信息和通信技术的传播,大量的图像被产生和共享,用于不同的目的。鉴于最近对越来越多的隐私泄露的担忧,一些照片去识别技术,如像素化、模糊和蒙版,经常被使用。然而,由于图像质量较低,并且丢失了许多面部特征,这些去识别图像不适合用于需要大量高质量数据的训练模型等应用。因此,在本文中,我们提出了一种新的面部去识别方法,该方法只关注个人识别所必需的面部区域。通过使用掩蔽和基于生成对抗网络的图像绘制来生成与原人不同的面部特征,我们的方法可以有效地执行去识别。为了证明我们提出的方案的性能,我们使用开放数据集进行了定量和定性评估。我们证明了我们提出的方案优于其他去识别方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Face De-identification Scheme Using Landmark-Based Inpainting
Due to the spread of various information and communication technologies, a huge amount of images are produced and shared for diverse purposes. Several de-identification techniques for photos, such as pixelation, blur, and mask, are routinely used in light of recent worries about the growing number of privacy leakages. However, due to the low image quality and loss of many facial features, these de-identified images are not suitable for use in applications such as training models that require a lot of high-quality data. Therefore, in this paper, we propose a new face de-identification method focusing only on facial regions essential for personal identification. By generating facial landmarks differently from the original person using masking and generative adversarial networks-based inpainting, our method can perform de-identification efficiently. To demonstrate the performance of our proposed scheme, we conducted quantitative and qualitative evaluations using an open dataset. We show that our proposed scheme outperforms other de-identification methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信