K. Ganesh, S. Rajasekhara, D. Bultreys, P. Ferreira
{"title":"纳米级铜互连中快速、自动化的晶粒取向和晶界分析","authors":"K. Ganesh, S. Rajasekhara, D. Bultreys, P. Ferreira","doi":"10.1109/IRPS.2011.5784524","DOIUrl":null,"url":null,"abstract":"A combination of diffraction scanning transmission electron microscopy (D-STEM) and automated precession microscopy is used to obtain orientation information from 108 copper grains in 120 nm wide copper interconnect lines. Grain boundary analysis based on this orientation data reveals that Σ3n (n = 1, 2) boundaries are predominant in these lines. Finite element analysis reveals regions of high and low stresses within the copper microstructure.","PeriodicalId":242672,"journal":{"name":"2011 International Reliability Physics Symposium","volume":"247 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Rapid and automated grain orientation and grain boundary analysis in nanoscale copper interconnects\",\"authors\":\"K. Ganesh, S. Rajasekhara, D. Bultreys, P. Ferreira\",\"doi\":\"10.1109/IRPS.2011.5784524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A combination of diffraction scanning transmission electron microscopy (D-STEM) and automated precession microscopy is used to obtain orientation information from 108 copper grains in 120 nm wide copper interconnect lines. Grain boundary analysis based on this orientation data reveals that Σ3n (n = 1, 2) boundaries are predominant in these lines. Finite element analysis reveals regions of high and low stresses within the copper microstructure.\",\"PeriodicalId\":242672,\"journal\":{\"name\":\"2011 International Reliability Physics Symposium\",\"volume\":\"247 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Reliability Physics Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRPS.2011.5784524\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Reliability Physics Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRPS.2011.5784524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Rapid and automated grain orientation and grain boundary analysis in nanoscale copper interconnects
A combination of diffraction scanning transmission electron microscopy (D-STEM) and automated precession microscopy is used to obtain orientation information from 108 copper grains in 120 nm wide copper interconnect lines. Grain boundary analysis based on this orientation data reveals that Σ3n (n = 1, 2) boundaries are predominant in these lines. Finite element analysis reveals regions of high and low stresses within the copper microstructure.