{"title":"MEMS用硅梁的纳米弯曲测试","authors":"T. Namazu, Y. Isono, T. Tanaka","doi":"10.1109/MEMSYS.2000.838517","DOIUrl":null,"url":null,"abstract":"We carried out a nanometer scale bending test for a single crystal silicon (Si) beam using an atomic force microscope (AFM). Nanometer scale Si beams with widths from 200 nm to 800 nm and a thickness of 255 nm were fabricated on an Si diaphragm by means of the field-enhanced anodization using AFM and the anisotropic wet etching. Bending tests for a micro- and millimeter scale beam were also carried out using an ultra-precision hardness tester and scratch tester, respectively. The mechanical property of Si beams on a nanometer scale was compared with that measured on a micro- and millimeter scale. SEM observations of the fracture surface were performed in order to reveal the size effect on the bending strength.","PeriodicalId":251857,"journal":{"name":"Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (Cat. No.00CH36308)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Nano-scale bending test of Si beam for MEMS\",\"authors\":\"T. Namazu, Y. Isono, T. Tanaka\",\"doi\":\"10.1109/MEMSYS.2000.838517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We carried out a nanometer scale bending test for a single crystal silicon (Si) beam using an atomic force microscope (AFM). Nanometer scale Si beams with widths from 200 nm to 800 nm and a thickness of 255 nm were fabricated on an Si diaphragm by means of the field-enhanced anodization using AFM and the anisotropic wet etching. Bending tests for a micro- and millimeter scale beam were also carried out using an ultra-precision hardness tester and scratch tester, respectively. The mechanical property of Si beams on a nanometer scale was compared with that measured on a micro- and millimeter scale. SEM observations of the fracture surface were performed in order to reveal the size effect on the bending strength.\",\"PeriodicalId\":251857,\"journal\":{\"name\":\"Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (Cat. No.00CH36308)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (Cat. No.00CH36308)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMSYS.2000.838517\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (Cat. No.00CH36308)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2000.838517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We carried out a nanometer scale bending test for a single crystal silicon (Si) beam using an atomic force microscope (AFM). Nanometer scale Si beams with widths from 200 nm to 800 nm and a thickness of 255 nm were fabricated on an Si diaphragm by means of the field-enhanced anodization using AFM and the anisotropic wet etching. Bending tests for a micro- and millimeter scale beam were also carried out using an ultra-precision hardness tester and scratch tester, respectively. The mechanical property of Si beams on a nanometer scale was compared with that measured on a micro- and millimeter scale. SEM observations of the fracture surface were performed in order to reveal the size effect on the bending strength.