基于s参数的机器学习EH/EW预测的自动频率选择

N. Ambasana, D. Gope, B. Mutnury, G. Anand
{"title":"基于s参数的机器学习EH/EW预测的自动频率选择","authors":"N. Ambasana, D. Gope, B. Mutnury, G. Anand","doi":"10.1109/EPEPS.2015.7347128","DOIUrl":null,"url":null,"abstract":"In the field of High Speed SerDes (HSS) channel analysis and design, the most widely accepted metrics for gauging signal integrity are Time Domain (TD) metrics: Bit Error Rate (BER), Eye-Height (EH) and Eye-Width (EW). With increasing bit-rates, TD simulations are getting compute-time intensive especially as the BER criterion is getting lower. Learning based mapping of Frequency Domain (FD) S-Parameter data to EH/EW in TD provides a fast alternative solution for thorough design-space exploration. A key challenge in this mapping procedure is the identification of the optimal frequency points in the S-Parameter data that are used for training the learning network. This paper outlines a methodology to identify the minimal set of critical frequency points using a Fast Correlation Based Feature (FCBF) selection algorithm. This technique is applied for prediction of EH/EW for a PCIe Gen 3 interface and the prediction accuracy is quantified.","PeriodicalId":130864,"journal":{"name":"2015 IEEE 24th Electrical Performance of Electronic Packaging and Systems (EPEPS)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Automated frequency selection for machine-learning based EH/EW prediction from S-Parameters\",\"authors\":\"N. Ambasana, D. Gope, B. Mutnury, G. Anand\",\"doi\":\"10.1109/EPEPS.2015.7347128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the field of High Speed SerDes (HSS) channel analysis and design, the most widely accepted metrics for gauging signal integrity are Time Domain (TD) metrics: Bit Error Rate (BER), Eye-Height (EH) and Eye-Width (EW). With increasing bit-rates, TD simulations are getting compute-time intensive especially as the BER criterion is getting lower. Learning based mapping of Frequency Domain (FD) S-Parameter data to EH/EW in TD provides a fast alternative solution for thorough design-space exploration. A key challenge in this mapping procedure is the identification of the optimal frequency points in the S-Parameter data that are used for training the learning network. This paper outlines a methodology to identify the minimal set of critical frequency points using a Fast Correlation Based Feature (FCBF) selection algorithm. This technique is applied for prediction of EH/EW for a PCIe Gen 3 interface and the prediction accuracy is quantified.\",\"PeriodicalId\":130864,\"journal\":{\"name\":\"2015 IEEE 24th Electrical Performance of Electronic Packaging and Systems (EPEPS)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 24th Electrical Performance of Electronic Packaging and Systems (EPEPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPEPS.2015.7347128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 24th Electrical Performance of Electronic Packaging and Systems (EPEPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEPS.2015.7347128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在高速编码(HSS)信道分析和设计领域,最广泛接受的测量信号完整性的指标是时域(TD)指标:误码率(BER)、眼高(EH)和眼宽(EW)。随着比特率的不断提高,TD模拟的计算时间越来越密集,特别是当误码率标准越来越低的时候。基于学习的频域(FD) s参数数据到TD中EH/EW的映射为彻底的设计空间探索提供了一种快速的替代解决方案。这个映射过程中的一个关键挑战是识别用于训练学习网络的s参数数据中的最佳频率点。本文概述了一种使用快速相关特征(FCBF)选择算法来识别最小临界频率点集的方法。将该技术应用于PCIe第3代接口的EH/EW预测,并对预测精度进行了量化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated frequency selection for machine-learning based EH/EW prediction from S-Parameters
In the field of High Speed SerDes (HSS) channel analysis and design, the most widely accepted metrics for gauging signal integrity are Time Domain (TD) metrics: Bit Error Rate (BER), Eye-Height (EH) and Eye-Width (EW). With increasing bit-rates, TD simulations are getting compute-time intensive especially as the BER criterion is getting lower. Learning based mapping of Frequency Domain (FD) S-Parameter data to EH/EW in TD provides a fast alternative solution for thorough design-space exploration. A key challenge in this mapping procedure is the identification of the optimal frequency points in the S-Parameter data that are used for training the learning network. This paper outlines a methodology to identify the minimal set of critical frequency points using a Fast Correlation Based Feature (FCBF) selection algorithm. This technique is applied for prediction of EH/EW for a PCIe Gen 3 interface and the prediction accuracy is quantified.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信