Y. Gao, J. Dong, O. Isabella, M. Zeman, G.Q. Zhang
{"title":"采用动态光伏遮阳构件的建筑采光模拟与分析","authors":"Y. Gao, J. Dong, O. Isabella, M. Zeman, G.Q. Zhang","doi":"10.1109/IFWS.2017.8245973","DOIUrl":null,"url":null,"abstract":"Photovoltaic (PV) windows with shading devices benefit buildings in terms of power generation, daylighting control, glare protection, etc. In order to harvest the maximum solar energy from the window area, solar tracking is applied to the PV shading elements. The complicated movement trajectories and dynamic daylighting are difficult to simulate by conventional methods. In this work, we introduce an optical simulation method of daylighting in complex building environment using DIVA and Grasshopper, which are plugins of Rhinoceros, a commercial 3D computer graphics and computer-aided design (CAD) software. An algorithmic model of the PV blinds is built by Grasshopper based on amodified model of a reference office. Then DIVA is applied to evaluate the daylighting performance of the dynamic and static PV blinds. Simulation results show that the working plane reveals higher illuminance level and lower glare level with the dynamic PV blinds than that with their static counter parts. It is demonstrated that the proposed simulation method can deal with the daylighting evaluation of complex and dynamic building environment.","PeriodicalId":131675,"journal":{"name":"2017 14th China International Forum on Solid State Lighting: International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS)","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Daylighting simulation and analysis of buildings with dynamic photovoltaic window shading elements\",\"authors\":\"Y. Gao, J. Dong, O. Isabella, M. Zeman, G.Q. Zhang\",\"doi\":\"10.1109/IFWS.2017.8245973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photovoltaic (PV) windows with shading devices benefit buildings in terms of power generation, daylighting control, glare protection, etc. In order to harvest the maximum solar energy from the window area, solar tracking is applied to the PV shading elements. The complicated movement trajectories and dynamic daylighting are difficult to simulate by conventional methods. In this work, we introduce an optical simulation method of daylighting in complex building environment using DIVA and Grasshopper, which are plugins of Rhinoceros, a commercial 3D computer graphics and computer-aided design (CAD) software. An algorithmic model of the PV blinds is built by Grasshopper based on amodified model of a reference office. Then DIVA is applied to evaluate the daylighting performance of the dynamic and static PV blinds. Simulation results show that the working plane reveals higher illuminance level and lower glare level with the dynamic PV blinds than that with their static counter parts. It is demonstrated that the proposed simulation method can deal with the daylighting evaluation of complex and dynamic building environment.\",\"PeriodicalId\":131675,\"journal\":{\"name\":\"2017 14th China International Forum on Solid State Lighting: International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS)\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 14th China International Forum on Solid State Lighting: International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IFWS.2017.8245973\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 14th China International Forum on Solid State Lighting: International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IFWS.2017.8245973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Daylighting simulation and analysis of buildings with dynamic photovoltaic window shading elements
Photovoltaic (PV) windows with shading devices benefit buildings in terms of power generation, daylighting control, glare protection, etc. In order to harvest the maximum solar energy from the window area, solar tracking is applied to the PV shading elements. The complicated movement trajectories and dynamic daylighting are difficult to simulate by conventional methods. In this work, we introduce an optical simulation method of daylighting in complex building environment using DIVA and Grasshopper, which are plugins of Rhinoceros, a commercial 3D computer graphics and computer-aided design (CAD) software. An algorithmic model of the PV blinds is built by Grasshopper based on amodified model of a reference office. Then DIVA is applied to evaluate the daylighting performance of the dynamic and static PV blinds. Simulation results show that the working plane reveals higher illuminance level and lower glare level with the dynamic PV blinds than that with their static counter parts. It is demonstrated that the proposed simulation method can deal with the daylighting evaluation of complex and dynamic building environment.