现代微处理器中基于漏洞的多比特扰流(MBU)保护交织

M. Maniatakos, M. Michael, Y. Makris
{"title":"现代微处理器中基于漏洞的多比特扰流(MBU)保护交织","authors":"M. Maniatakos, M. Michael, Y. Makris","doi":"10.1109/TEST.2012.6401594","DOIUrl":null,"url":null,"abstract":"We present a novel methodology for protecting incore microprocessor memory arrays from Multiple Bit Upsets (MBUs). Recent radiation studies in modern SRAMs demonstrate that up to 55% of Single Event Upsets (SEUs) due to alpha particle or neutron strikes result in MBUs. Towards suppressing these MBUs, methods such as physical interleaving or periodic scrubbing have been successfully applied to caches. However, these methods are not applicable to in-core, high-performance Content-Addressable Memories (CAM) arrays, due to computational complexity, high delay and area overhead, and lack of information redundancy. To this end, we propose a cost-effective method for enhancing in-core memory array resiliency, called Vulnerability-based Interleaving (VBI). VBI physically disperses bit-lines based on their vulnerability factor and applies selective parity to these lines. Thereby, VBI aims to ensure that an MBU will affect at most one critical bit-field, so that the selective parity will detect the error and a subsequent pipeline flush will remove its effects. Experimental results employing simulation of realistic MBU fault models on the instruction queue of the Alpha 21264 microprocessor in a 65nm process, demonstrate that a 30% selective parity protection of VBI-arranged bit-lines reduces vulnerability by 94%.","PeriodicalId":353290,"journal":{"name":"2012 IEEE International Test Conference","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Vulnerability-based Interleaving for Multi-Bit Upset (MBU) protection in modern microprocessors\",\"authors\":\"M. Maniatakos, M. Michael, Y. Makris\",\"doi\":\"10.1109/TEST.2012.6401594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel methodology for protecting incore microprocessor memory arrays from Multiple Bit Upsets (MBUs). Recent radiation studies in modern SRAMs demonstrate that up to 55% of Single Event Upsets (SEUs) due to alpha particle or neutron strikes result in MBUs. Towards suppressing these MBUs, methods such as physical interleaving or periodic scrubbing have been successfully applied to caches. However, these methods are not applicable to in-core, high-performance Content-Addressable Memories (CAM) arrays, due to computational complexity, high delay and area overhead, and lack of information redundancy. To this end, we propose a cost-effective method for enhancing in-core memory array resiliency, called Vulnerability-based Interleaving (VBI). VBI physically disperses bit-lines based on their vulnerability factor and applies selective parity to these lines. Thereby, VBI aims to ensure that an MBU will affect at most one critical bit-field, so that the selective parity will detect the error and a subsequent pipeline flush will remove its effects. Experimental results employing simulation of realistic MBU fault models on the instruction queue of the Alpha 21264 microprocessor in a 65nm process, demonstrate that a 30% selective parity protection of VBI-arranged bit-lines reduces vulnerability by 94%.\",\"PeriodicalId\":353290,\"journal\":{\"name\":\"2012 IEEE International Test Conference\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Test Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TEST.2012.6401594\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Test Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TEST.2012.6401594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

我们提出了一种新的方法来保护核心微处理器存储器阵列免受多比特扰流(MBUs)。最近对现代sram的辐射研究表明,高达55%的由α粒子或中子撞击引起的单事件扰动(seu)导致mbu。为了抑制这些MBUs,物理交错或周期性擦洗等方法已成功地应用于缓存。然而,由于计算复杂性、高延迟和面积开销以及缺乏信息冗余,这些方法不适用于核内、高性能的内容寻址存储器(CAM)阵列。为此,我们提出了一种经济有效的方法来增强核心内存阵列的弹性,称为基于漏洞的交错(VBI)。VBI根据其脆弱性因素物理地分散位线,并对这些线应用选择性奇偶校验。因此,VBI旨在确保MBU最多将影响一个关键位域,以便选择性奇偶校验将检测错误,随后的管道刷新将消除其影响。实验结果表明,在Alpha 21264微处理器的65nm工艺中,对vbi排列的位线进行30%的选择性奇偶保护,可将漏洞降低94%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vulnerability-based Interleaving for Multi-Bit Upset (MBU) protection in modern microprocessors
We present a novel methodology for protecting incore microprocessor memory arrays from Multiple Bit Upsets (MBUs). Recent radiation studies in modern SRAMs demonstrate that up to 55% of Single Event Upsets (SEUs) due to alpha particle or neutron strikes result in MBUs. Towards suppressing these MBUs, methods such as physical interleaving or periodic scrubbing have been successfully applied to caches. However, these methods are not applicable to in-core, high-performance Content-Addressable Memories (CAM) arrays, due to computational complexity, high delay and area overhead, and lack of information redundancy. To this end, we propose a cost-effective method for enhancing in-core memory array resiliency, called Vulnerability-based Interleaving (VBI). VBI physically disperses bit-lines based on their vulnerability factor and applies selective parity to these lines. Thereby, VBI aims to ensure that an MBU will affect at most one critical bit-field, so that the selective parity will detect the error and a subsequent pipeline flush will remove its effects. Experimental results employing simulation of realistic MBU fault models on the instruction queue of the Alpha 21264 microprocessor in a 65nm process, demonstrate that a 30% selective parity protection of VBI-arranged bit-lines reduces vulnerability by 94%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信