{"title":"用于自检架构的系统AUED代码","authors":"D. Sciuto, C. Silvano, R. Stefanelli","doi":"10.1109/DFTVS.1998.732165","DOIUrl":null,"url":null,"abstract":"Encoding techniques and dedicated self-checking architectures can be conveniently adopted in VLSI design to increase fault detection. Area overhead and speed penalty may be traded-off with fault detection capabilities. Aim of this work is to define a class of systematic all-unidirectional error-detecting (AUED) codes suitable for self-checking architectures for multiple output combinational circuits. A class of systematic AUED codes is proposed along with a logic synthesis algorithm to derive the redundant functions directly from the primary inputs. If compared with Berger codes, the proposed encoding techniques require greater output redundancy but provide performance optimization in terms of both transition delays and area overhead.","PeriodicalId":245879,"journal":{"name":"Proceedings 1998 IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (Cat. No.98EX223)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Systematic AUED codes for self-checking architectures\",\"authors\":\"D. Sciuto, C. Silvano, R. Stefanelli\",\"doi\":\"10.1109/DFTVS.1998.732165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Encoding techniques and dedicated self-checking architectures can be conveniently adopted in VLSI design to increase fault detection. Area overhead and speed penalty may be traded-off with fault detection capabilities. Aim of this work is to define a class of systematic all-unidirectional error-detecting (AUED) codes suitable for self-checking architectures for multiple output combinational circuits. A class of systematic AUED codes is proposed along with a logic synthesis algorithm to derive the redundant functions directly from the primary inputs. If compared with Berger codes, the proposed encoding techniques require greater output redundancy but provide performance optimization in terms of both transition delays and area overhead.\",\"PeriodicalId\":245879,\"journal\":{\"name\":\"Proceedings 1998 IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (Cat. No.98EX223)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 1998 IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (Cat. No.98EX223)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DFTVS.1998.732165\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1998 IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (Cat. No.98EX223)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DFTVS.1998.732165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Systematic AUED codes for self-checking architectures
Encoding techniques and dedicated self-checking architectures can be conveniently adopted in VLSI design to increase fault detection. Area overhead and speed penalty may be traded-off with fault detection capabilities. Aim of this work is to define a class of systematic all-unidirectional error-detecting (AUED) codes suitable for self-checking architectures for multiple output combinational circuits. A class of systematic AUED codes is proposed along with a logic synthesis algorithm to derive the redundant functions directly from the primary inputs. If compared with Berger codes, the proposed encoding techniques require greater output redundancy but provide performance optimization in terms of both transition delays and area overhead.