晶圆级可靠性鉴定的实际应用

J. May, H. Hoang
{"title":"晶圆级可靠性鉴定的实际应用","authors":"J. May, H. Hoang","doi":"10.1109/IRWS.1994.515846","DOIUrl":null,"url":null,"abstract":"Deficiencies in the traditional approach to ensuring product reliability (e.g. package level testing) were first noted way back in the early 1970's. However, it was not until the late 1980's to early 1990's that WLRC was seriously considered and began to be implemented across the industry. This new approach for achieving greater levels of reliability required a fundamental change from the mind set of reliability verification on finished products (screening the outputs) to comprehending and controlling the various factors that determine reliability (controlling the inputs). This mind set is known as \"building-in\" or \"designing-in\" reliability and envisions a total reliability assurance and improvement strategy that is executed at all stages of semiconductor manufacturing. To meet the challenge of continuous improvement, it is now a corporate policy that a WLRC program be required at all R&D and production facilities with the intention of determining and eliminating all faults at their source of origin. Emphasis is placed on the use of wafer level reliability testing for introducing and qualifying new semiconductor technology and controlling production once technology has been transferred to the wafer fab. The description, philosophy and issues of integrating the WLRC program into a manufacturing environment have been described previously. Here a practical application is presented. As an example, the development, execution and results of a WLR qualification and production control plan for an advanced, submicron, triple-level metal CMOS process is provided.","PeriodicalId":164872,"journal":{"name":"Proceedings of 1994 IEEE International Integrated Reliability Workshop (IRWS)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Practical application of a wafer level reliability qualification\",\"authors\":\"J. May, H. Hoang\",\"doi\":\"10.1109/IRWS.1994.515846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deficiencies in the traditional approach to ensuring product reliability (e.g. package level testing) were first noted way back in the early 1970's. However, it was not until the late 1980's to early 1990's that WLRC was seriously considered and began to be implemented across the industry. This new approach for achieving greater levels of reliability required a fundamental change from the mind set of reliability verification on finished products (screening the outputs) to comprehending and controlling the various factors that determine reliability (controlling the inputs). This mind set is known as \\\"building-in\\\" or \\\"designing-in\\\" reliability and envisions a total reliability assurance and improvement strategy that is executed at all stages of semiconductor manufacturing. To meet the challenge of continuous improvement, it is now a corporate policy that a WLRC program be required at all R&D and production facilities with the intention of determining and eliminating all faults at their source of origin. Emphasis is placed on the use of wafer level reliability testing for introducing and qualifying new semiconductor technology and controlling production once technology has been transferred to the wafer fab. The description, philosophy and issues of integrating the WLRC program into a manufacturing environment have been described previously. Here a practical application is presented. As an example, the development, execution and results of a WLR qualification and production control plan for an advanced, submicron, triple-level metal CMOS process is provided.\",\"PeriodicalId\":164872,\"journal\":{\"name\":\"Proceedings of 1994 IEEE International Integrated Reliability Workshop (IRWS)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 IEEE International Integrated Reliability Workshop (IRWS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRWS.1994.515846\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Integrated Reliability Workshop (IRWS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRWS.1994.515846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在确保产品可靠性的传统方法中的缺陷(例如包装级测试)早在20世纪70年代初就被注意到。然而,直到20世纪80年代末到90年代初,WLRC才被认真考虑并开始在整个行业中实施。这种实现更高可靠性水平的新方法需要从对成品进行可靠性验证的思维模式(筛选输出)到理解和控制决定可靠性的各种因素(控制输入)的根本改变。这种思维模式被称为“内建”或“设计内建”可靠性,并设想在半导体制造的所有阶段执行的总体可靠性保证和改进策略。为了应对持续改进的挑战,现在公司的一项政策是,所有研发和生产设施都需要一个WLRC计划,目的是确定和消除所有故障的来源。重点是使用晶圆级可靠性测试来引入和鉴定新的半导体技术,并在技术转移到晶圆厂后控制生产。将WLRC计划集成到制造环境中的描述、理念和问题已经在前面描述过。本文给出了一个实际应用。作为一个例子,提供了先进的,亚微米,三层金属CMOS工艺的WLR认证和生产控制计划的开发,执行和结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Practical application of a wafer level reliability qualification
Deficiencies in the traditional approach to ensuring product reliability (e.g. package level testing) were first noted way back in the early 1970's. However, it was not until the late 1980's to early 1990's that WLRC was seriously considered and began to be implemented across the industry. This new approach for achieving greater levels of reliability required a fundamental change from the mind set of reliability verification on finished products (screening the outputs) to comprehending and controlling the various factors that determine reliability (controlling the inputs). This mind set is known as "building-in" or "designing-in" reliability and envisions a total reliability assurance and improvement strategy that is executed at all stages of semiconductor manufacturing. To meet the challenge of continuous improvement, it is now a corporate policy that a WLRC program be required at all R&D and production facilities with the intention of determining and eliminating all faults at their source of origin. Emphasis is placed on the use of wafer level reliability testing for introducing and qualifying new semiconductor technology and controlling production once technology has been transferred to the wafer fab. The description, philosophy and issues of integrating the WLRC program into a manufacturing environment have been described previously. Here a practical application is presented. As an example, the development, execution and results of a WLR qualification and production control plan for an advanced, submicron, triple-level metal CMOS process is provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信