{"title":"利用EM算法对多截点电迁移数据进行统计分析","authors":"N. Raghavan, C. Tan","doi":"10.1109/IPFA.2007.4378096","DOIUrl":null,"url":null,"abstract":"The novelty of this work lies in using the E&M algorithm for analyzing multi-censored mixture distribution EM data. Furthermore, the Akaike Information Criterion (AIC) will be used to determine the number of failure mechanisms in a given set of failure data and the Bayes' posterior probability theory is applied to determine the probability of each failure data belonging to the different failure mechanisms. All these useful information are further validated by performing failure analysis on selected test units.","PeriodicalId":334987,"journal":{"name":"2007 14th International Symposium on the Physical and Failure Analysis of Integrated Circuits","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Statistical Analysis of Multi-Censored Electromigration Data using the EM Algorithm\",\"authors\":\"N. Raghavan, C. Tan\",\"doi\":\"10.1109/IPFA.2007.4378096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The novelty of this work lies in using the E&M algorithm for analyzing multi-censored mixture distribution EM data. Furthermore, the Akaike Information Criterion (AIC) will be used to determine the number of failure mechanisms in a given set of failure data and the Bayes' posterior probability theory is applied to determine the probability of each failure data belonging to the different failure mechanisms. All these useful information are further validated by performing failure analysis on selected test units.\",\"PeriodicalId\":334987,\"journal\":{\"name\":\"2007 14th International Symposium on the Physical and Failure Analysis of Integrated Circuits\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 14th International Symposium on the Physical and Failure Analysis of Integrated Circuits\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPFA.2007.4378096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 14th International Symposium on the Physical and Failure Analysis of Integrated Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPFA.2007.4378096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
摘要
本工作的新颖之处在于使用E&M算法分析多截数混合分布电磁数据。在此基础上,利用赤池信息准则(Akaike Information Criterion, AIC)确定给定失效数据中失效机制的数量,并利用贝叶斯后验概率理论确定每个失效数据属于不同失效机制的概率。通过对选定的测试单元进行故障分析,进一步验证了所有这些有用的信息。
Statistical Analysis of Multi-Censored Electromigration Data using the EM Algorithm
The novelty of this work lies in using the E&M algorithm for analyzing multi-censored mixture distribution EM data. Furthermore, the Akaike Information Criterion (AIC) will be used to determine the number of failure mechanisms in a given set of failure data and the Bayes' posterior probability theory is applied to determine the probability of each failure data belonging to the different failure mechanisms. All these useful information are further validated by performing failure analysis on selected test units.