通过空闲列的利用,3d内存中的非对称ECC组织

Hyunseung Han, Joon-Sung Yang
{"title":"通过空闲列的利用,3d内存中的非对称ECC组织","authors":"Hyunseung Han, Joon-Sung Yang","doi":"10.1109/DFT.2015.7315128","DOIUrl":null,"url":null,"abstract":"3D-memory and processor-memory structures are promising applications of 3D-IC technology. With 3D integration, the effective density of memories can increase and the interconnect distance from processor to memory can be shortened. Due to their stacked structure, the upper dies behave as shields blocking outer particles from reaching lower dies, and it makes an error rate of the top layer largest among all layers. Therefore, it is important to improve reliability of upper dies in the 3D-ICs. A novel ECC scheme for 3D-memory to secure reliable operations by enhancing ECC capability of upper layer memories is introduced in this paper. The proposed scheme does not require additional redundancies. Instead, it utilizes unused spare columns of lower layer memories to store additional check-bits of upper layer memories. It forms an asymmetric ECC organization across different layers which enhances ECC capabilities in upper layers. Experimental results show that the proposed method can tolerate more than three times of a bit-error rate compared to the conventional method.","PeriodicalId":383972,"journal":{"name":"2015 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Asymmetric ECC organization in 3D-memory via spare column utilization\",\"authors\":\"Hyunseung Han, Joon-Sung Yang\",\"doi\":\"10.1109/DFT.2015.7315128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"3D-memory and processor-memory structures are promising applications of 3D-IC technology. With 3D integration, the effective density of memories can increase and the interconnect distance from processor to memory can be shortened. Due to their stacked structure, the upper dies behave as shields blocking outer particles from reaching lower dies, and it makes an error rate of the top layer largest among all layers. Therefore, it is important to improve reliability of upper dies in the 3D-ICs. A novel ECC scheme for 3D-memory to secure reliable operations by enhancing ECC capability of upper layer memories is introduced in this paper. The proposed scheme does not require additional redundancies. Instead, it utilizes unused spare columns of lower layer memories to store additional check-bits of upper layer memories. It forms an asymmetric ECC organization across different layers which enhances ECC capabilities in upper layers. Experimental results show that the proposed method can tolerate more than three times of a bit-error rate compared to the conventional method.\",\"PeriodicalId\":383972,\"journal\":{\"name\":\"2015 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DFT.2015.7315128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DFT.2015.7315128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

3d存储器和处理器存储器结构是3d集成电路技术的有前途的应用。通过三维集成,存储器的有效密度可以增加,处理器到存储器的互连距离可以缩短。由于上层模具的堆叠结构,上层模具起到屏蔽外部粒子到达下层模具的作用,使得上层的错误率在所有层中最大。因此,提高3d - ic上模的可靠性是非常重要的。本文介绍了一种新的三维存储器ECC方案,通过增强上层存储器的ECC能力来保证三维存储器的可靠运行。拟议的方案不需要额外的冗余。相反,它利用底层存储器中未使用的备用列来存储上层存储器的额外校验位。它在不同的层之间形成了不对称的ECC组织,增强了上层的ECC能力。实验结果表明,与传统方法相比,该方法可以承受3倍以上的误码率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymmetric ECC organization in 3D-memory via spare column utilization
3D-memory and processor-memory structures are promising applications of 3D-IC technology. With 3D integration, the effective density of memories can increase and the interconnect distance from processor to memory can be shortened. Due to their stacked structure, the upper dies behave as shields blocking outer particles from reaching lower dies, and it makes an error rate of the top layer largest among all layers. Therefore, it is important to improve reliability of upper dies in the 3D-ICs. A novel ECC scheme for 3D-memory to secure reliable operations by enhancing ECC capability of upper layer memories is introduced in this paper. The proposed scheme does not require additional redundancies. Instead, it utilizes unused spare columns of lower layer memories to store additional check-bits of upper layer memories. It forms an asymmetric ECC organization across different layers which enhances ECC capabilities in upper layers. Experimental results show that the proposed method can tolerate more than three times of a bit-error rate compared to the conventional method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信