基于强化学习的机器人全局路径规划算法

Penggang Gao, Zihan Liu, Zongkai Wu, Donglin Wang
{"title":"基于强化学习的机器人全局路径规划算法","authors":"Penggang Gao, Zihan Liu, Zongkai Wu, Donglin Wang","doi":"10.1109/ROBIO49542.2019.8961753","DOIUrl":null,"url":null,"abstract":"Path planning is the key technology for autonomous mobile robots. In view of the shortage of paths found by traditional best first search (BFS) and rapidly-exploring random trees (RRT) algorithm which are not short and smooth enough for robot navigation, a new global planning algorithm combined with reinforcement learning is presented for robots. In our algorithm, a path graph is established firstly, in which the paths collided with the obstacles are removed directly. Then a collision-free path will be found by Q-Learning from starting point to the goal. The experiment results illustrate that it can generate shorter and smoother paths, compared with the BFS and RRT algorithm.","PeriodicalId":121822,"journal":{"name":"2019 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"235 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"A Global Path Planning Algorithm for Robots Using Reinforcement Learning\",\"authors\":\"Penggang Gao, Zihan Liu, Zongkai Wu, Donglin Wang\",\"doi\":\"10.1109/ROBIO49542.2019.8961753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Path planning is the key technology for autonomous mobile robots. In view of the shortage of paths found by traditional best first search (BFS) and rapidly-exploring random trees (RRT) algorithm which are not short and smooth enough for robot navigation, a new global planning algorithm combined with reinforcement learning is presented for robots. In our algorithm, a path graph is established firstly, in which the paths collided with the obstacles are removed directly. Then a collision-free path will be found by Q-Learning from starting point to the goal. The experiment results illustrate that it can generate shorter and smoother paths, compared with the BFS and RRT algorithm.\",\"PeriodicalId\":121822,\"journal\":{\"name\":\"2019 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"volume\":\"235 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBIO49542.2019.8961753\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO49542.2019.8961753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

路径规划是自主移动机器人的关键技术。针对传统的最佳优先搜索(best first search, BFS)和快速探索随机树(fast -exploring random trees, RRT)算法在机器人导航中路径不够短、不够流畅的缺点,提出了一种结合强化学习的机器人全局规划算法。算法首先建立路径图,直接去除与障碍物发生碰撞的路径;然后通过Q-Learning找到一条从起点到目标的无碰撞路径。实验结果表明,与BFS和RRT算法相比,该算法生成的路径更短、更平滑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Global Path Planning Algorithm for Robots Using Reinforcement Learning
Path planning is the key technology for autonomous mobile robots. In view of the shortage of paths found by traditional best first search (BFS) and rapidly-exploring random trees (RRT) algorithm which are not short and smooth enough for robot navigation, a new global planning algorithm combined with reinforcement learning is presented for robots. In our algorithm, a path graph is established firstly, in which the paths collided with the obstacles are removed directly. Then a collision-free path will be found by Q-Learning from starting point to the goal. The experiment results illustrate that it can generate shorter and smoother paths, compared with the BFS and RRT algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信