状态空间宏建模中Loewner矩阵的快速奇异值分解

A. Hochman
{"title":"状态空间宏建模中Loewner矩阵的快速奇异值分解","authors":"A. Hochman","doi":"10.1109/EPEPS.2015.7347156","DOIUrl":null,"url":null,"abstract":"Computation of a singular-value decomposition (SVD) of a Loewner matrix is an essential step in several frequency-domain macromodeling algorithms. When the data set is large, the computational cost of this step is prohibitive. We describe a fast algorithm that avoids explicitly forming the Loewner matrix. Instead, it exploits the matrix's structure and rapid decay of singular values in typical applications to compute only the dominant singular values and corresponding singular vectors. A robust stopping criterion ensures accurate results up to a given tolerance. Computation times of less than two minutes are reported for matrices with as many as 105 rows and columns.","PeriodicalId":130864,"journal":{"name":"2015 IEEE 24th Electrical Performance of Electronic Packaging and Systems (EPEPS)","volume":"159 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Fast singular-value decomposition of Loewner matrices for state-space macromodeling\",\"authors\":\"A. Hochman\",\"doi\":\"10.1109/EPEPS.2015.7347156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computation of a singular-value decomposition (SVD) of a Loewner matrix is an essential step in several frequency-domain macromodeling algorithms. When the data set is large, the computational cost of this step is prohibitive. We describe a fast algorithm that avoids explicitly forming the Loewner matrix. Instead, it exploits the matrix's structure and rapid decay of singular values in typical applications to compute only the dominant singular values and corresponding singular vectors. A robust stopping criterion ensures accurate results up to a given tolerance. Computation times of less than two minutes are reported for matrices with as many as 105 rows and columns.\",\"PeriodicalId\":130864,\"journal\":{\"name\":\"2015 IEEE 24th Electrical Performance of Electronic Packaging and Systems (EPEPS)\",\"volume\":\"159 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 24th Electrical Performance of Electronic Packaging and Systems (EPEPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPEPS.2015.7347156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 24th Electrical Performance of Electronic Packaging and Systems (EPEPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEPS.2015.7347156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在许多频域宏建模算法中,计算下限矩阵的奇异值分解(SVD)是必不可少的步骤。当数据集很大时,此步骤的计算成本令人望而却步。我们描述了一种避免显式形成Loewner矩阵的快速算法。相反,它利用矩阵的结构和典型应用中奇异值的快速衰减来计算优势奇异值和相应的奇异向量。一个强大的停止准则,确保准确的结果达到给定的公差。对于多达105行和105列的矩阵,计算时间少于两分钟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast singular-value decomposition of Loewner matrices for state-space macromodeling
Computation of a singular-value decomposition (SVD) of a Loewner matrix is an essential step in several frequency-domain macromodeling algorithms. When the data set is large, the computational cost of this step is prohibitive. We describe a fast algorithm that avoids explicitly forming the Loewner matrix. Instead, it exploits the matrix's structure and rapid decay of singular values in typical applications to compute only the dominant singular values and corresponding singular vectors. A robust stopping criterion ensures accurate results up to a given tolerance. Computation times of less than two minutes are reported for matrices with as many as 105 rows and columns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信