用电学表征评价铜硅通孔阻挡层和介质衬里的可靠性

J. Chan, Xu Cheng, K. Lee, W. Kanert, C. S. Tan
{"title":"用电学表征评价铜硅通孔阻挡层和介质衬里的可靠性","authors":"J. Chan, Xu Cheng, K. Lee, W. Kanert, C. S. Tan","doi":"10.1109/EPTC.2016.7861524","DOIUrl":null,"url":null,"abstract":"The purpose of this study is to analyze the failure mechanisms of copper (Cu) through silicon via (TSV) with titanium (Ti) barrier and silicon dioxide (SiO2) dielectric liner, following various stress tests such as electrical, temperature cycling (TC) and high temperature storage (HTS) via electrical characterization methods. The various stresses are performed individually or in a combination of TC or HTS with electrical bias for comparison. Capacitance-voltage (C-V) and current density-electric field (J-E) characteristics were plotted after the respective stresses, to detect any changes in its electrical characteristics. Results from C-V and J-E plots suggest that barrier degradation is related to material and structural influence. The degradation in the barrier layer can lead to Cu diffusion and drift into the dielectric layer, which is reflected by changes to the minimum depletion capacitance measured in the C-V curve. An increase or decrease in the minimum depletion capacitance measured indicates Cu ions presence in SiO2 or silicon (Si) substrate respectively. The individual stresses performed reveal that there was insignificant copper existence in the dielectric layer. However a combination of stresses which involves an additional electrical bias stress on TC or HTS sample better enabled the detection of degraded barrier by electrical means. The electrical bias serves as a driving force for Cu ions drift through degraded barrier as Cu does not readily diffuse into SiO2 at room temperature. On the other hand, by increasing the number of TSVs measured in an array structure, it is found that degraded barrier and Cu trace was detected without the need for subsequent electrical bias stress.","PeriodicalId":136525,"journal":{"name":"2016 IEEE 18th Electronics Packaging Technology Conference (EPTC)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Reliability evaluation of copper (Cu) through-silicon via (TSV) barrier and dielectric liner by electrical characterization\",\"authors\":\"J. Chan, Xu Cheng, K. Lee, W. Kanert, C. S. Tan\",\"doi\":\"10.1109/EPTC.2016.7861524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this study is to analyze the failure mechanisms of copper (Cu) through silicon via (TSV) with titanium (Ti) barrier and silicon dioxide (SiO2) dielectric liner, following various stress tests such as electrical, temperature cycling (TC) and high temperature storage (HTS) via electrical characterization methods. The various stresses are performed individually or in a combination of TC or HTS with electrical bias for comparison. Capacitance-voltage (C-V) and current density-electric field (J-E) characteristics were plotted after the respective stresses, to detect any changes in its electrical characteristics. Results from C-V and J-E plots suggest that barrier degradation is related to material and structural influence. The degradation in the barrier layer can lead to Cu diffusion and drift into the dielectric layer, which is reflected by changes to the minimum depletion capacitance measured in the C-V curve. An increase or decrease in the minimum depletion capacitance measured indicates Cu ions presence in SiO2 or silicon (Si) substrate respectively. The individual stresses performed reveal that there was insignificant copper existence in the dielectric layer. However a combination of stresses which involves an additional electrical bias stress on TC or HTS sample better enabled the detection of degraded barrier by electrical means. The electrical bias serves as a driving force for Cu ions drift through degraded barrier as Cu does not readily diffuse into SiO2 at room temperature. On the other hand, by increasing the number of TSVs measured in an array structure, it is found that degraded barrier and Cu trace was detected without the need for subsequent electrical bias stress.\",\"PeriodicalId\":136525,\"journal\":{\"name\":\"2016 IEEE 18th Electronics Packaging Technology Conference (EPTC)\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 18th Electronics Packaging Technology Conference (EPTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPTC.2016.7861524\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 18th Electronics Packaging Technology Conference (EPTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPTC.2016.7861524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本研究的目的是通过电、温度循环(TC)和高温储存(HTS)等各种应力测试,通过电表征方法分析铜(Cu)通过钛(Ti)屏障和二氧化硅(SiO2)介电衬里的硅孔(TSV)的破坏机制。不同的应力是单独执行的,也可以是带电偏置的TC或HTS的组合。分别绘制应力后的电容电压(C-V)和电流密度电场(J-E)特性,检测其电特性的变化。C-V和J-E图的结果表明,屏障的降解与材料和结构的影响有关。阻挡层的降解会导致Cu扩散并漂移到介电层,这反映在C-V曲线中测量到的最小耗尽电容的变化上。测量的最小耗尽电容的增加或减少分别表明Cu离子存在于SiO2或硅(Si)衬底中。单独的应力分析表明,在介质层中存在少量的铜。然而,涉及TC或HTS样品上附加电偏压应力的应力组合可以更好地通过电手段检测降解势垒。由于Cu在室温下不易扩散到SiO2中,因此电偏置是Cu离子通过降解势垒漂移的驱动力。另一方面,通过增加在阵列结构中测量的tsv数量,发现在不需要随后的电偏压应力的情况下检测到退化的势垒和Cu痕量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reliability evaluation of copper (Cu) through-silicon via (TSV) barrier and dielectric liner by electrical characterization
The purpose of this study is to analyze the failure mechanisms of copper (Cu) through silicon via (TSV) with titanium (Ti) barrier and silicon dioxide (SiO2) dielectric liner, following various stress tests such as electrical, temperature cycling (TC) and high temperature storage (HTS) via electrical characterization methods. The various stresses are performed individually or in a combination of TC or HTS with electrical bias for comparison. Capacitance-voltage (C-V) and current density-electric field (J-E) characteristics were plotted after the respective stresses, to detect any changes in its electrical characteristics. Results from C-V and J-E plots suggest that barrier degradation is related to material and structural influence. The degradation in the barrier layer can lead to Cu diffusion and drift into the dielectric layer, which is reflected by changes to the minimum depletion capacitance measured in the C-V curve. An increase or decrease in the minimum depletion capacitance measured indicates Cu ions presence in SiO2 or silicon (Si) substrate respectively. The individual stresses performed reveal that there was insignificant copper existence in the dielectric layer. However a combination of stresses which involves an additional electrical bias stress on TC or HTS sample better enabled the detection of degraded barrier by electrical means. The electrical bias serves as a driving force for Cu ions drift through degraded barrier as Cu does not readily diffuse into SiO2 at room temperature. On the other hand, by increasing the number of TSVs measured in an array structure, it is found that degraded barrier and Cu trace was detected without the need for subsequent electrical bias stress.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信