基于特征选择的二元阿基米德优化算法求解回归问题

Djermane Amine, Haouassi Hichem, Zertal Soumia
{"title":"基于特征选择的二元阿基米德优化算法求解回归问题","authors":"Djermane Amine, Haouassi Hichem, Zertal Soumia","doi":"10.1109/PAIS56586.2022.9946903","DOIUrl":null,"url":null,"abstract":"The use of datasets became paramount in many searches in one hand, on the other hand the rapidly growth of data size involves computational complexity and reduces model performances, this encourage us to find new methods to deal with this problem. Features Selection is the one of the main task used to resolve this issue. In this paper we propose a novel features selection method for regression task based on AOA (Archimedes Optimization Algorithm), experimental results shows that the proposed method can efficiently reduce dataset size and improve model performance.","PeriodicalId":266229,"journal":{"name":"2022 4th International Conference on Pattern Analysis and Intelligent Systems (PAIS)","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Binary Archimedes Optimization Algorithm based Feature Selection for Regression Problem\",\"authors\":\"Djermane Amine, Haouassi Hichem, Zertal Soumia\",\"doi\":\"10.1109/PAIS56586.2022.9946903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of datasets became paramount in many searches in one hand, on the other hand the rapidly growth of data size involves computational complexity and reduces model performances, this encourage us to find new methods to deal with this problem. Features Selection is the one of the main task used to resolve this issue. In this paper we propose a novel features selection method for regression task based on AOA (Archimedes Optimization Algorithm), experimental results shows that the proposed method can efficiently reduce dataset size and improve model performance.\",\"PeriodicalId\":266229,\"journal\":{\"name\":\"2022 4th International Conference on Pattern Analysis and Intelligent Systems (PAIS)\",\"volume\":\"144 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 4th International Conference on Pattern Analysis and Intelligent Systems (PAIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PAIS56586.2022.9946903\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th International Conference on Pattern Analysis and Intelligent Systems (PAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PAIS56586.2022.9946903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

一方面,数据集的使用在许多搜索中变得至关重要,另一方面,数据规模的快速增长涉及计算复杂性和降低模型性能,这鼓励我们寻找新的方法来处理这个问题。特征选择是用来解决这个问题的主要任务之一。本文提出了一种基于AOA(阿基米德优化算法)的回归任务特征选择方法,实验结果表明,该方法可以有效地减小数据集大小,提高模型性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Binary Archimedes Optimization Algorithm based Feature Selection for Regression Problem
The use of datasets became paramount in many searches in one hand, on the other hand the rapidly growth of data size involves computational complexity and reduces model performances, this encourage us to find new methods to deal with this problem. Features Selection is the one of the main task used to resolve this issue. In this paper we propose a novel features selection method for regression task based on AOA (Archimedes Optimization Algorithm), experimental results shows that the proposed method can efficiently reduce dataset size and improve model performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信