Q. Ouyang, S. Koester, J. Chu, K. Saenger, J. Ott, K. Jenkins
{"title":"栅极设计对亚100nm应变si /SiGe nmodfet射频性能的影响","authors":"Q. Ouyang, S. Koester, J. Chu, K. Saenger, J. Ott, K. Jenkins","doi":"10.1109/SISPAD.2003.1233672","DOIUrl":null,"url":null,"abstract":"The effects of gate structure design on RF performance of strained-Si/SiGe nMODFETs are studied using device simulation and experiments. It is found that while gate resistance only affects fringing gate capacitance can have a significant impact on both /sub fr/ and f/sub max/, indicating that the physical gate structure has to be optimized for any specific application. The experiments suggest that low-ic material is needed as sidewall spacer (if any) and passivation for reducing fringing gate capacitance. Furthermore, the simulations show that if low gate resistance can be achieved by using a multi-finger geometry, a rectangular-shaped gate should be used in order to reduce fringing gate capacitance. If not, a T-gate should be used to reduce gate resistance for high f/sub max/.","PeriodicalId":220325,"journal":{"name":"International Conference on Simulation of Semiconductor Processes and Devices, 2003. SISPAD 2003.","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implications of gate design on RF performance of sub-100 nm strained-Si/SiGe nMODFETs\",\"authors\":\"Q. Ouyang, S. Koester, J. Chu, K. Saenger, J. Ott, K. Jenkins\",\"doi\":\"10.1109/SISPAD.2003.1233672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effects of gate structure design on RF performance of strained-Si/SiGe nMODFETs are studied using device simulation and experiments. It is found that while gate resistance only affects fringing gate capacitance can have a significant impact on both /sub fr/ and f/sub max/, indicating that the physical gate structure has to be optimized for any specific application. The experiments suggest that low-ic material is needed as sidewall spacer (if any) and passivation for reducing fringing gate capacitance. Furthermore, the simulations show that if low gate resistance can be achieved by using a multi-finger geometry, a rectangular-shaped gate should be used in order to reduce fringing gate capacitance. If not, a T-gate should be used to reduce gate resistance for high f/sub max/.\",\"PeriodicalId\":220325,\"journal\":{\"name\":\"International Conference on Simulation of Semiconductor Processes and Devices, 2003. SISPAD 2003.\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Simulation of Semiconductor Processes and Devices, 2003. SISPAD 2003.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SISPAD.2003.1233672\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Simulation of Semiconductor Processes and Devices, 2003. SISPAD 2003.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISPAD.2003.1233672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Implications of gate design on RF performance of sub-100 nm strained-Si/SiGe nMODFETs
The effects of gate structure design on RF performance of strained-Si/SiGe nMODFETs are studied using device simulation and experiments. It is found that while gate resistance only affects fringing gate capacitance can have a significant impact on both /sub fr/ and f/sub max/, indicating that the physical gate structure has to be optimized for any specific application. The experiments suggest that low-ic material is needed as sidewall spacer (if any) and passivation for reducing fringing gate capacitance. Furthermore, the simulations show that if low gate resistance can be achieved by using a multi-finger geometry, a rectangular-shaped gate should be used in order to reduce fringing gate capacitance. If not, a T-gate should be used to reduce gate resistance for high f/sub max/.