含孔洞微焊点疲劳裂纹扩展分析

T. Terasaki, H. Tanie
{"title":"含孔洞微焊点疲劳裂纹扩展分析","authors":"T. Terasaki, H. Tanie","doi":"10.1109/EMAP.2005.1598232","DOIUrl":null,"url":null,"abstract":"Voids in a solder joint can reduce their fatigue life. Voids are caused by the presence of flux in solder paste during reflow soldering, and they are difficult to remove completely. From numerical analysis, we aimed to obtain criteria for evaluating the effect of voids on fatigue life in a solder joint. We investigated crack propagation in the microsolder joints of a semiconductor and developed a new crack propagation model. In our model, the fatigue life of a solder joint is evaluated based on damage that is accumulated during crack propagation, and crack paths are automatically calculated. The crack-propagation behavior of a center-cracked-plate (CCP) specimen calculated using the model agreed well with that obtained from measurement. Using our model, we analyzed the effect of positions and sizes of voids on crack paths and the fatigue life of a ball grid array (BGA) structure. The crack paths and the fatigue life were both found to strongly depend on the positions and sizes of voids. We have achieved a reliable method of evaluating the effects of voids in a solder joint.","PeriodicalId":352550,"journal":{"name":"2005 International Symposium on Electronics Materials and Packaging","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Fatigue crack propagation analysis for microsolder joints with void\",\"authors\":\"T. Terasaki, H. Tanie\",\"doi\":\"10.1109/EMAP.2005.1598232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Voids in a solder joint can reduce their fatigue life. Voids are caused by the presence of flux in solder paste during reflow soldering, and they are difficult to remove completely. From numerical analysis, we aimed to obtain criteria for evaluating the effect of voids on fatigue life in a solder joint. We investigated crack propagation in the microsolder joints of a semiconductor and developed a new crack propagation model. In our model, the fatigue life of a solder joint is evaluated based on damage that is accumulated during crack propagation, and crack paths are automatically calculated. The crack-propagation behavior of a center-cracked-plate (CCP) specimen calculated using the model agreed well with that obtained from measurement. Using our model, we analyzed the effect of positions and sizes of voids on crack paths and the fatigue life of a ball grid array (BGA) structure. The crack paths and the fatigue life were both found to strongly depend on the positions and sizes of voids. We have achieved a reliable method of evaluating the effects of voids in a solder joint.\",\"PeriodicalId\":352550,\"journal\":{\"name\":\"2005 International Symposium on Electronics Materials and Packaging\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 International Symposium on Electronics Materials and Packaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMAP.2005.1598232\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 International Symposium on Electronics Materials and Packaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMAP.2005.1598232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

焊点中的空洞会降低焊点的疲劳寿命。在回流焊过程中,由于焊锡膏中存在助焊剂而产生的空洞是难以完全消除的。通过数值分析,我们旨在获得评价焊点空隙对疲劳寿命影响的准则。研究了半导体微焊点的裂纹扩展,建立了一种新的裂纹扩展模型。在该模型中,基于裂纹扩展过程中累积的损伤来评估焊点的疲劳寿命,并自动计算裂纹路径。用该模型计算的中心裂纹板(CCP)试件裂纹扩展特性与实测结果吻合较好。利用该模型分析了孔洞的位置和尺寸对球栅阵列(BGA)结构裂纹路径和疲劳寿命的影响。裂纹路径和疲劳寿命与孔洞的位置和大小有很大关系。我们已经获得了一种可靠的方法来评估焊点中空洞的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fatigue crack propagation analysis for microsolder joints with void
Voids in a solder joint can reduce their fatigue life. Voids are caused by the presence of flux in solder paste during reflow soldering, and they are difficult to remove completely. From numerical analysis, we aimed to obtain criteria for evaluating the effect of voids on fatigue life in a solder joint. We investigated crack propagation in the microsolder joints of a semiconductor and developed a new crack propagation model. In our model, the fatigue life of a solder joint is evaluated based on damage that is accumulated during crack propagation, and crack paths are automatically calculated. The crack-propagation behavior of a center-cracked-plate (CCP) specimen calculated using the model agreed well with that obtained from measurement. Using our model, we analyzed the effect of positions and sizes of voids on crack paths and the fatigue life of a ball grid array (BGA) structure. The crack paths and the fatigue life were both found to strongly depend on the positions and sizes of voids. We have achieved a reliable method of evaluating the effects of voids in a solder joint.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信