正常工作下GaAs场效应管的逐渐退化

M. Millea
{"title":"正常工作下GaAs场效应管的逐渐退化","authors":"M. Millea","doi":"10.1109/IRPS.1986.362122","DOIUrl":null,"url":null,"abstract":"The gradual degradation of low-noise and power GaAs FETs under normal operating conditions has been investigated. The degradation of the drain current under both low and normal biasing was monitored for low-noise devices, but only the degradation of the drain resistance was monitored for power GaAs FETs. Using elevated temperatures to stabilize devices and assuming a single monotonically decreasing failure mode, it is relatively simple to determine the device's long-term reliability within several days of operating at normal temperatures of 100°C or lower. This is accomplished by observing a sufficiently low degradation rate, which, when extrapolated to the desired end-of-life, yields an acceptable low longterm degradation estimation. To minimize the risk associated with the possible existence of compensating gradual degradation modes, the gradual degradation of devices is examined against a second gradual degradation failure criterion, which is based on the device having a sufficient low-degradation second derivative. Fulfilling the second-order failure criterion is more difficult to demonstrate and is the main focus of this investigation.","PeriodicalId":354436,"journal":{"name":"24th International Reliability Physics Symposium","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1986-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gradual Degradation of GaAs FETs Under Normal Operation\",\"authors\":\"M. Millea\",\"doi\":\"10.1109/IRPS.1986.362122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The gradual degradation of low-noise and power GaAs FETs under normal operating conditions has been investigated. The degradation of the drain current under both low and normal biasing was monitored for low-noise devices, but only the degradation of the drain resistance was monitored for power GaAs FETs. Using elevated temperatures to stabilize devices and assuming a single monotonically decreasing failure mode, it is relatively simple to determine the device's long-term reliability within several days of operating at normal temperatures of 100°C or lower. This is accomplished by observing a sufficiently low degradation rate, which, when extrapolated to the desired end-of-life, yields an acceptable low longterm degradation estimation. To minimize the risk associated with the possible existence of compensating gradual degradation modes, the gradual degradation of devices is examined against a second gradual degradation failure criterion, which is based on the device having a sufficient low-degradation second derivative. Fulfilling the second-order failure criterion is more difficult to demonstrate and is the main focus of this investigation.\",\"PeriodicalId\":354436,\"journal\":{\"name\":\"24th International Reliability Physics Symposium\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1986-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"24th International Reliability Physics Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRPS.1986.362122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"24th International Reliability Physics Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRPS.1986.362122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了低噪声和功率GaAs场效应管在正常工作条件下的逐渐退化。低噪声器件监测了低偏置和正常偏置下漏极电流的衰减,而功率GaAs fet只监测了漏极电阻的衰减。在100℃或更低的正常温度下,使用高温来稳定设备,并假设单一的单调递减的故障模式,在几天内确定设备的长期可靠性相对简单。这是通过观察一个足够低的降解率来实现的,当外推到期望的寿命结束时,产生一个可接受的低长期降解估计。为了最小化与可能存在的补偿逐渐退化模式相关的风险,根据第二个逐渐退化失效准则检查设备的逐渐退化,该准则基于设备具有足够的低退化二阶导数。满足二阶破坏准则是较难证明的,也是本研究的重点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gradual Degradation of GaAs FETs Under Normal Operation
The gradual degradation of low-noise and power GaAs FETs under normal operating conditions has been investigated. The degradation of the drain current under both low and normal biasing was monitored for low-noise devices, but only the degradation of the drain resistance was monitored for power GaAs FETs. Using elevated temperatures to stabilize devices and assuming a single monotonically decreasing failure mode, it is relatively simple to determine the device's long-term reliability within several days of operating at normal temperatures of 100°C or lower. This is accomplished by observing a sufficiently low degradation rate, which, when extrapolated to the desired end-of-life, yields an acceptable low longterm degradation estimation. To minimize the risk associated with the possible existence of compensating gradual degradation modes, the gradual degradation of devices is examined against a second gradual degradation failure criterion, which is based on the device having a sufficient low-degradation second derivative. Fulfilling the second-order failure criterion is more difficult to demonstrate and is the main focus of this investigation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信