砷注入和闪光灯退火形成锗浅结

K. Osada, T. Fukunaga, K. Shibahara
{"title":"砷注入和闪光灯退火形成锗浅结","authors":"K. Osada, T. Fukunaga, K. Shibahara","doi":"10.1109/VTSA.2009.5159271","DOIUrl":null,"url":null,"abstract":"Shallow, about 20 nm, depth n+/p junction of Ge was successfully fabricated by As+ implantation and FLA. Since the junction depth was limited by implantation energy, much shallower junction would be fabricated by reducing the energy. High potential of arsenic as a dopant was clearly demonstrated, although FLA parameters were not optimized yet. Since SPE retardation was found in the specimens with PAI, other channeling suppression technique should be found.","PeriodicalId":309622,"journal":{"name":"2009 International Symposium on VLSI Technology, Systems, and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Ge shallow junction formation by As implantation and flash lamp annealing\",\"authors\":\"K. Osada, T. Fukunaga, K. Shibahara\",\"doi\":\"10.1109/VTSA.2009.5159271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Shallow, about 20 nm, depth n+/p junction of Ge was successfully fabricated by As+ implantation and FLA. Since the junction depth was limited by implantation energy, much shallower junction would be fabricated by reducing the energy. High potential of arsenic as a dopant was clearly demonstrated, although FLA parameters were not optimized yet. Since SPE retardation was found in the specimens with PAI, other channeling suppression technique should be found.\",\"PeriodicalId\":309622,\"journal\":{\"name\":\"2009 International Symposium on VLSI Technology, Systems, and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Symposium on VLSI Technology, Systems, and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VTSA.2009.5159271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Symposium on VLSI Technology, Systems, and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTSA.2009.5159271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

利用As+注入和FLA成功制备了深度约20 nm的Ge浅n+/p结。由于结深受注入能量的限制,通过降低能量可以制备出更浅的结。砷作为掺杂剂的高潜力得到了明确的证明,尽管FLA参数尚未优化。由于在PAI的标本中发现了SPE阻滞,应该寻找其他的通道抑制技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ge shallow junction formation by As implantation and flash lamp annealing
Shallow, about 20 nm, depth n+/p junction of Ge was successfully fabricated by As+ implantation and FLA. Since the junction depth was limited by implantation energy, much shallower junction would be fabricated by reducing the energy. High potential of arsenic as a dopant was clearly demonstrated, although FLA parameters were not optimized yet. Since SPE retardation was found in the specimens with PAI, other channeling suppression technique should be found.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信