贴模材料对大功率发光二极管模组性能和可靠性的影响

Xin Li, Xu Chen, G. Lu
{"title":"贴模材料对大功率发光二极管模组性能和可靠性的影响","authors":"Xin Li, Xu Chen, G. Lu","doi":"10.1109/ECTC.2010.5490640","DOIUrl":null,"url":null,"abstract":"Heat dissipation for packaging high-power light-emitting diodes is critically important to performance and reliability of LED lighting modules. The first thermal interface encountered by the heat flow is a die-attach material between the diode chip and its substrate. In this study, three different types of die-attach materials were used to construct 1-Watt GaN LED single-chip modules: a silver epoxy processed by curing; a lead-free solder paste by reflowing; and a nanosilver paste by low-temperature sintering. The modules were aged in an 85°C/85% relative humidity chamber and temperature-cycled between −40°C and 150°C. Luminous fluxes of the aged and cycled modules were measured to determine the effect of die-attach material. Results showed that the LED modules with chips joined by the low-temperature sintered nanosilver paste gave the best performance and long-term stability. This is attributed to high thermal conductivity of the sintered silver joint for improved heat dissipation.","PeriodicalId":429629,"journal":{"name":"2010 Proceedings 60th Electronic Components and Technology Conference (ECTC)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Effect of die-attach material on performance and reliability of high-power light-emitting diode modules\",\"authors\":\"Xin Li, Xu Chen, G. Lu\",\"doi\":\"10.1109/ECTC.2010.5490640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heat dissipation for packaging high-power light-emitting diodes is critically important to performance and reliability of LED lighting modules. The first thermal interface encountered by the heat flow is a die-attach material between the diode chip and its substrate. In this study, three different types of die-attach materials were used to construct 1-Watt GaN LED single-chip modules: a silver epoxy processed by curing; a lead-free solder paste by reflowing; and a nanosilver paste by low-temperature sintering. The modules were aged in an 85°C/85% relative humidity chamber and temperature-cycled between −40°C and 150°C. Luminous fluxes of the aged and cycled modules were measured to determine the effect of die-attach material. Results showed that the LED modules with chips joined by the low-temperature sintered nanosilver paste gave the best performance and long-term stability. This is attributed to high thermal conductivity of the sintered silver joint for improved heat dissipation.\",\"PeriodicalId\":429629,\"journal\":{\"name\":\"2010 Proceedings 60th Electronic Components and Technology Conference (ECTC)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Proceedings 60th Electronic Components and Technology Conference (ECTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECTC.2010.5490640\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Proceedings 60th Electronic Components and Technology Conference (ECTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC.2010.5490640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

封装大功率发光二极管的散热对LED照明模块的性能和可靠性至关重要。热流遇到的第一个热界面是二极管芯片与其衬底之间的附模材料。在本研究中,使用三种不同类型的模贴材料来构建1瓦GaN LED单芯片模块:一种是经固化处理的环氧银;回流制无铅锡膏;并通过低温烧结制成纳米银浆料。模块在85°C/85%相对湿度的室内老化,温度循环在- 40°C到150°C之间。对老化和循环后的光通量进行了测量,以确定模贴材料对光通量的影响。结果表明,低温烧结纳米银浆料连接芯片的LED模组具有最佳的性能和长期稳定性。这是由于烧结银接头的高导热性,以改善散热。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of die-attach material on performance and reliability of high-power light-emitting diode modules
Heat dissipation for packaging high-power light-emitting diodes is critically important to performance and reliability of LED lighting modules. The first thermal interface encountered by the heat flow is a die-attach material between the diode chip and its substrate. In this study, three different types of die-attach materials were used to construct 1-Watt GaN LED single-chip modules: a silver epoxy processed by curing; a lead-free solder paste by reflowing; and a nanosilver paste by low-temperature sintering. The modules were aged in an 85°C/85% relative humidity chamber and temperature-cycled between −40°C and 150°C. Luminous fluxes of the aged and cycled modules were measured to determine the effect of die-attach material. Results showed that the LED modules with chips joined by the low-temperature sintered nanosilver paste gave the best performance and long-term stability. This is attributed to high thermal conductivity of the sintered silver joint for improved heat dissipation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信