W. Wessner, C. Heitzinger, A. Hossinger, S. Selberherr
{"title":"三维扩散模拟的误差估计驱动各向异性网格细化","authors":"W. Wessner, C. Heitzinger, A. Hossinger, S. Selberherr","doi":"10.1109/SISPAD.2003.1233649","DOIUrl":null,"url":null,"abstract":"We present a computational method for locally adapted conformal anisotropic tetrahedral mesh refinement. The element size is determined by an anisotropy function which is governed by an error estimation driven ruler according to an adjustable maximum error. Anisotropic structures are taken into account to reduce the amount of elements compared to strict isotropic refinement. The spatial resolution in three-dimensional unstructured tetrahedral meshes for diffusion simulation can be dynamically increased.","PeriodicalId":220325,"journal":{"name":"International Conference on Simulation of Semiconductor Processes and Devices, 2003. SISPAD 2003.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Error estimated driven anisotropic mesh refinement for three-dimensional diffusion simulation\",\"authors\":\"W. Wessner, C. Heitzinger, A. Hossinger, S. Selberherr\",\"doi\":\"10.1109/SISPAD.2003.1233649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a computational method for locally adapted conformal anisotropic tetrahedral mesh refinement. The element size is determined by an anisotropy function which is governed by an error estimation driven ruler according to an adjustable maximum error. Anisotropic structures are taken into account to reduce the amount of elements compared to strict isotropic refinement. The spatial resolution in three-dimensional unstructured tetrahedral meshes for diffusion simulation can be dynamically increased.\",\"PeriodicalId\":220325,\"journal\":{\"name\":\"International Conference on Simulation of Semiconductor Processes and Devices, 2003. SISPAD 2003.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Simulation of Semiconductor Processes and Devices, 2003. SISPAD 2003.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SISPAD.2003.1233649\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Simulation of Semiconductor Processes and Devices, 2003. SISPAD 2003.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISPAD.2003.1233649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Error estimated driven anisotropic mesh refinement for three-dimensional diffusion simulation
We present a computational method for locally adapted conformal anisotropic tetrahedral mesh refinement. The element size is determined by an anisotropy function which is governed by an error estimation driven ruler according to an adjustable maximum error. Anisotropic structures are taken into account to reduce the amount of elements compared to strict isotropic refinement. The spatial resolution in three-dimensional unstructured tetrahedral meshes for diffusion simulation can be dynamically increased.