电子冷却用平板热管的性能表征

U. Vadakkan, S. Garimella, C. Sobhan
{"title":"电子冷却用平板热管的性能表征","authors":"U. Vadakkan, S. Garimella, C. Sobhan","doi":"10.1115/imece2000-2272","DOIUrl":null,"url":null,"abstract":"A computational model has been developed to analyze the transient and steady-state performance of flat heat pipes and assess their performance under different operating and geometric parameters, in order to arrive at optimal designs. The model assumes two-dimensional fields for flow and heat transfer and solves the governing differential equations using a finite-difference approach. The wick region of the heat pipe is analyzed using transport equations for a porous medium. The influence of axial heat conduction along the wall, as well as the energy transport in the wick, on the velocity and temperature distributions is examined. The overall performance of the heat pipe is quantified by calculating an effective thermal conductance from the heat input and the temperature drop along the heat pipe wall. Parametric studies are conducted using the model to investigate the dependence of the heat pipe performance on the heat input at the evaporator, the containing wall thickness, and the porosity of the wick.","PeriodicalId":179094,"journal":{"name":"Packaging of Electronic and Photonic Devices","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Characterization of the Performance of Flat Heat Pipes for Electronics Cooling\",\"authors\":\"U. Vadakkan, S. Garimella, C. Sobhan\",\"doi\":\"10.1115/imece2000-2272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A computational model has been developed to analyze the transient and steady-state performance of flat heat pipes and assess their performance under different operating and geometric parameters, in order to arrive at optimal designs. The model assumes two-dimensional fields for flow and heat transfer and solves the governing differential equations using a finite-difference approach. The wick region of the heat pipe is analyzed using transport equations for a porous medium. The influence of axial heat conduction along the wall, as well as the energy transport in the wick, on the velocity and temperature distributions is examined. The overall performance of the heat pipe is quantified by calculating an effective thermal conductance from the heat input and the temperature drop along the heat pipe wall. Parametric studies are conducted using the model to investigate the dependence of the heat pipe performance on the heat input at the evaporator, the containing wall thickness, and the porosity of the wick.\",\"PeriodicalId\":179094,\"journal\":{\"name\":\"Packaging of Electronic and Photonic Devices\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Packaging of Electronic and Photonic Devices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2000-2272\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Packaging of Electronic and Photonic Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2000-2272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文建立了平板热管的瞬态和稳态性能计算模型,并对其在不同工况参数和几何参数下的性能进行了评估,以达到优化设计的目的。该模型采用二维流场和换热场,并采用有限差分方法求解控制微分方程。利用多孔介质的输运方程对热管的芯区进行了分析。研究了沿壁面的轴向热传导以及芯内的能量传递对速度和温度分布的影响。热管的整体性能是通过计算热管输入的有效导热系数和沿热管壁的温度下降来量化的。利用该模型进行了参数化研究,以研究热管性能与蒸发器的热量输入、含壁厚度和芯的孔隙率的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization of the Performance of Flat Heat Pipes for Electronics Cooling
A computational model has been developed to analyze the transient and steady-state performance of flat heat pipes and assess their performance under different operating and geometric parameters, in order to arrive at optimal designs. The model assumes two-dimensional fields for flow and heat transfer and solves the governing differential equations using a finite-difference approach. The wick region of the heat pipe is analyzed using transport equations for a porous medium. The influence of axial heat conduction along the wall, as well as the energy transport in the wick, on the velocity and temperature distributions is examined. The overall performance of the heat pipe is quantified by calculating an effective thermal conductance from the heat input and the temperature drop along the heat pipe wall. Parametric studies are conducted using the model to investigate the dependence of the heat pipe performance on the heat input at the evaporator, the containing wall thickness, and the porosity of the wick.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信