{"title":"体硅MEMS器件的热迁移电隔离","authors":"C. Chung, M. Allen","doi":"10.1109/MEMSYS.2000.838507","DOIUrl":null,"url":null,"abstract":"Electrical isolation of bulk micromachined single crystal silicon MEMS devices is demonstrated using through-wafer junction isolation. Through-wafer npn junctions are fabricated using \"temperature gradient zone melting\" or \"thermomigration\" of aluminum in n-type silicon. The npn structures isolate various regions of the single crystal silicon from one another by acting as back-to-back diodes. Thermomigration is a potentially high-throughput process that is consistent with batch fabrication principles, avoids the necessity of a handle wafer, and retains the mechanical integrity of single crystal silicon. By use of this process, electrically isolated sensors and actuators can be fabricated from a single wafer of silicon. Breakdown voltages of multiple thermomigrated npn junctions in excess of 1500 V are demonstrated. The utility of this technique is shown by fabricating a comb-drive electrostatic actuator from a single silicon wafer and driving it at 162 Vpp.","PeriodicalId":251857,"journal":{"name":"Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (Cat. No.00CH36308)","volume":"110 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Electrical isolation of bulk silicon MEMS devices via thermomigration\",\"authors\":\"C. Chung, M. Allen\",\"doi\":\"10.1109/MEMSYS.2000.838507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrical isolation of bulk micromachined single crystal silicon MEMS devices is demonstrated using through-wafer junction isolation. Through-wafer npn junctions are fabricated using \\\"temperature gradient zone melting\\\" or \\\"thermomigration\\\" of aluminum in n-type silicon. The npn structures isolate various regions of the single crystal silicon from one another by acting as back-to-back diodes. Thermomigration is a potentially high-throughput process that is consistent with batch fabrication principles, avoids the necessity of a handle wafer, and retains the mechanical integrity of single crystal silicon. By use of this process, electrically isolated sensors and actuators can be fabricated from a single wafer of silicon. Breakdown voltages of multiple thermomigrated npn junctions in excess of 1500 V are demonstrated. The utility of this technique is shown by fabricating a comb-drive electrostatic actuator from a single silicon wafer and driving it at 162 Vpp.\",\"PeriodicalId\":251857,\"journal\":{\"name\":\"Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (Cat. No.00CH36308)\",\"volume\":\"110 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (Cat. No.00CH36308)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMSYS.2000.838507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (Cat. No.00CH36308)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2000.838507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electrical isolation of bulk silicon MEMS devices via thermomigration
Electrical isolation of bulk micromachined single crystal silicon MEMS devices is demonstrated using through-wafer junction isolation. Through-wafer npn junctions are fabricated using "temperature gradient zone melting" or "thermomigration" of aluminum in n-type silicon. The npn structures isolate various regions of the single crystal silicon from one another by acting as back-to-back diodes. Thermomigration is a potentially high-throughput process that is consistent with batch fabrication principles, avoids the necessity of a handle wafer, and retains the mechanical integrity of single crystal silicon. By use of this process, electrically isolated sensors and actuators can be fabricated from a single wafer of silicon. Breakdown voltages of multiple thermomigrated npn junctions in excess of 1500 V are demonstrated. The utility of this technique is shown by fabricating a comb-drive electrostatic actuator from a single silicon wafer and driving it at 162 Vpp.