机器学习在成瘾障碍中的最新应用综述

Amina Bouhadja, Abdelkrim Bouramoul
{"title":"机器学习在成瘾障碍中的最新应用综述","authors":"Amina Bouhadja, Abdelkrim Bouramoul","doi":"10.1109/PAIS56586.2022.9946888","DOIUrl":null,"url":null,"abstract":"Constant contributions of Machine Learning (ML) technology in health sciences has extended to solve addiction disorders problems, whether to detect symptoms or predict risks and treatment outcomes. This article presents an updated review related to the application of ML techniques for addiction disorders, the selected works covered substance addiction (N=18 studies) and non-substance addiction (N=3 studies), and were divided into three categories prognosis, diagnosis, and predicting treatment success. To provide strong evidence about the potential of ML methods to accelerate early prevention and intervention, ultimately aiming to pave the way for further applications of ML approaches in this field.","PeriodicalId":266229,"journal":{"name":"2022 4th International Conference on Pattern Analysis and Intelligent Systems (PAIS)","volume":"154 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Review on Recent Machine Learning Applications for Addiction Disorders\",\"authors\":\"Amina Bouhadja, Abdelkrim Bouramoul\",\"doi\":\"10.1109/PAIS56586.2022.9946888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Constant contributions of Machine Learning (ML) technology in health sciences has extended to solve addiction disorders problems, whether to detect symptoms or predict risks and treatment outcomes. This article presents an updated review related to the application of ML techniques for addiction disorders, the selected works covered substance addiction (N=18 studies) and non-substance addiction (N=3 studies), and were divided into three categories prognosis, diagnosis, and predicting treatment success. To provide strong evidence about the potential of ML methods to accelerate early prevention and intervention, ultimately aiming to pave the way for further applications of ML approaches in this field.\",\"PeriodicalId\":266229,\"journal\":{\"name\":\"2022 4th International Conference on Pattern Analysis and Intelligent Systems (PAIS)\",\"volume\":\"154 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 4th International Conference on Pattern Analysis and Intelligent Systems (PAIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PAIS56586.2022.9946888\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th International Conference on Pattern Analysis and Intelligent Systems (PAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PAIS56586.2022.9946888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机器学习(ML)技术在健康科学中的不断贡献已经扩展到解决成瘾障碍问题,无论是检测症状还是预测风险和治疗结果。本文对ML技术在成瘾障碍中的应用进行了最新的综述,所选的研究涵盖了物质成瘾(N=18)和非物质成瘾(N=3),并分为预后、诊断和预测治疗成功三大类。为机器学习方法加速早期预防和干预的潜力提供强有力的证据,最终旨在为机器学习方法在该领域的进一步应用铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Review on Recent Machine Learning Applications for Addiction Disorders
Constant contributions of Machine Learning (ML) technology in health sciences has extended to solve addiction disorders problems, whether to detect symptoms or predict risks and treatment outcomes. This article presents an updated review related to the application of ML techniques for addiction disorders, the selected works covered substance addiction (N=18 studies) and non-substance addiction (N=3 studies), and were divided into three categories prognosis, diagnosis, and predicting treatment success. To provide strong evidence about the potential of ML methods to accelerate early prevention and intervention, ultimately aiming to pave the way for further applications of ML approaches in this field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信