{"title":"LDD mosfet的栅致带间隧穿漏电流","authors":"H. Wann, P. Ko, C. Hu","doi":"10.1109/IEDM.1992.307329","DOIUrl":null,"url":null,"abstract":"Theoretical and experimental studies are presented to model the gate-induced drain leakage(GIDL) current due to band-to-band tunneling, which is one of the major leakage components in off-state MOSFETs. The model shows a good agreement with the experimental data for more than 7 decades of current magnitudes. Therefore the impact of this tunneling leakage current can be correctly evaluated. Based on this model, the impact of GIDL on low off-state leakage drain engineering and on oxide scaling is investigated.<<ETX>>","PeriodicalId":287098,"journal":{"name":"1992 International Technical Digest on Electron Devices Meeting","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Gate-induced band-to-band tunneling leakage current in LDD MOSFETs\",\"authors\":\"H. Wann, P. Ko, C. Hu\",\"doi\":\"10.1109/IEDM.1992.307329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Theoretical and experimental studies are presented to model the gate-induced drain leakage(GIDL) current due to band-to-band tunneling, which is one of the major leakage components in off-state MOSFETs. The model shows a good agreement with the experimental data for more than 7 decades of current magnitudes. Therefore the impact of this tunneling leakage current can be correctly evaluated. Based on this model, the impact of GIDL on low off-state leakage drain engineering and on oxide scaling is investigated.<<ETX>>\",\"PeriodicalId\":287098,\"journal\":{\"name\":\"1992 International Technical Digest on Electron Devices Meeting\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1992 International Technical Digest on Electron Devices Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEDM.1992.307329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1992 International Technical Digest on Electron Devices Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.1992.307329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Gate-induced band-to-band tunneling leakage current in LDD MOSFETs
Theoretical and experimental studies are presented to model the gate-induced drain leakage(GIDL) current due to band-to-band tunneling, which is one of the major leakage components in off-state MOSFETs. The model shows a good agreement with the experimental data for more than 7 decades of current magnitudes. Therefore the impact of this tunneling leakage current can be correctly evaluated. Based on this model, the impact of GIDL on low off-state leakage drain engineering and on oxide scaling is investigated.<>