进程变化感知的STT-RAM仿真工具:nvsim - vx

{"title":"进程变化感知的STT-RAM仿真工具:nvsim - vx","authors":"","doi":"10.1109/icicdt.2017.7993508","DOIUrl":null,"url":null,"abstract":"Spin-transfer torque random access memory (STT-RAM) recently received significant attentions for its promising characteristics in cache and memory applications. As an early-stage modeling tool, NVSim has been widely adopted for simulations of emerging nonvolatile memory technologies in computer architecture research, including STT-RAM, ReRAM, PCM, etc. In this work, we introduce a new member of NVSim family - NVSim-VXs, which enables statistical simulation of STT-RAM for write performance, errors, and energy consumption. This enhanced model takes into account the impacts of parametric variabilities of CMOS and MTJ devices and the chip operating temperature. It is also calibrated with Monte-Carlo Simulations based on macro-magnetic and SPICE models, covering five technology nodes between 22nm and 90nm. NVSim-VXs strongly supports the fast-growing needs of STT-RAM research on reliability analysis and enhancement, announcing the next important stage of NVSim development.","PeriodicalId":382735,"journal":{"name":"2017 IEEE International Conference on IC Design and Technology (ICICDT)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Process variation aware STT-RAM simulation tool: NVSim-VXs\",\"authors\":\"\",\"doi\":\"10.1109/icicdt.2017.7993508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spin-transfer torque random access memory (STT-RAM) recently received significant attentions for its promising characteristics in cache and memory applications. As an early-stage modeling tool, NVSim has been widely adopted for simulations of emerging nonvolatile memory technologies in computer architecture research, including STT-RAM, ReRAM, PCM, etc. In this work, we introduce a new member of NVSim family - NVSim-VXs, which enables statistical simulation of STT-RAM for write performance, errors, and energy consumption. This enhanced model takes into account the impacts of parametric variabilities of CMOS and MTJ devices and the chip operating temperature. It is also calibrated with Monte-Carlo Simulations based on macro-magnetic and SPICE models, covering five technology nodes between 22nm and 90nm. NVSim-VXs strongly supports the fast-growing needs of STT-RAM research on reliability analysis and enhancement, announcing the next important stage of NVSim development.\",\"PeriodicalId\":382735,\"journal\":{\"name\":\"2017 IEEE International Conference on IC Design and Technology (ICICDT)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on IC Design and Technology (ICICDT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icicdt.2017.7993508\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on IC Design and Technology (ICICDT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icicdt.2017.7993508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自旋传递扭矩随机存取存储器(STT-RAM)因其在高速缓存和存储领域的应用前景而受到广泛关注。NVSim作为一种早期的建模工具,已被广泛应用于计算机体系结构研究中新兴的非易失性存储技术的仿真,包括STT-RAM、ReRAM、PCM等。在这项工作中,我们介绍了NVSim家族的新成员- NVSim- vx,它可以统计模拟STT-RAM的写性能,错误和能耗。该增强模型考虑了CMOS和MTJ器件的参数变化以及芯片工作温度的影响。基于宏磁和SPICE模型的蒙特卡罗模拟对其进行了校准,涵盖了22纳米至90纳米之间的五个技术节点。NVSim- vx大力支持STT-RAM研究在可靠性分析和增强方面快速增长的需求,宣布了NVSim发展的下一个重要阶段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Process variation aware STT-RAM simulation tool: NVSim-VXs
Spin-transfer torque random access memory (STT-RAM) recently received significant attentions for its promising characteristics in cache and memory applications. As an early-stage modeling tool, NVSim has been widely adopted for simulations of emerging nonvolatile memory technologies in computer architecture research, including STT-RAM, ReRAM, PCM, etc. In this work, we introduce a new member of NVSim family - NVSim-VXs, which enables statistical simulation of STT-RAM for write performance, errors, and energy consumption. This enhanced model takes into account the impacts of parametric variabilities of CMOS and MTJ devices and the chip operating temperature. It is also calibrated with Monte-Carlo Simulations based on macro-magnetic and SPICE models, covering five technology nodes between 22nm and 90nm. NVSim-VXs strongly supports the fast-growing needs of STT-RAM research on reliability analysis and enhancement, announcing the next important stage of NVSim development.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信