{"title":"在电路板中嵌入有源元件的电子组件的PCB堆积层配置优化","authors":"W. C. Maia Filho, M. Brizoux, A. Grivon","doi":"10.1109/ESIME.2010.5464607","DOIUrl":null,"url":null,"abstract":"The manufacturing process of Printed Circuit Boards (PCB) with embedded active components requires several modifications on the build-up layer configuration, including the use of thinner layers and heterogeneous composite materials. From the point of view of second level interconnects the increase in density and complexity of the build-up of electronic board leads to an increase of the total resin-content. As demonstrated in a previous work, this increase of the ratio between resin and glass has a major consequence on the mechanical behavior of the assemblies, particularly on the fatigue resistance of component solder joints.","PeriodicalId":152004,"journal":{"name":"2010 11th International Thermal, Mechanical & Multi-Physics Simulation, and Experiments in Microelectronics and Microsystems (EuroSimE)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Optimization of PCB build-up layer configuration for electronic assemblies with active embedded components in the board\",\"authors\":\"W. C. Maia Filho, M. Brizoux, A. Grivon\",\"doi\":\"10.1109/ESIME.2010.5464607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The manufacturing process of Printed Circuit Boards (PCB) with embedded active components requires several modifications on the build-up layer configuration, including the use of thinner layers and heterogeneous composite materials. From the point of view of second level interconnects the increase in density and complexity of the build-up of electronic board leads to an increase of the total resin-content. As demonstrated in a previous work, this increase of the ratio between resin and glass has a major consequence on the mechanical behavior of the assemblies, particularly on the fatigue resistance of component solder joints.\",\"PeriodicalId\":152004,\"journal\":{\"name\":\"2010 11th International Thermal, Mechanical & Multi-Physics Simulation, and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 11th International Thermal, Mechanical & Multi-Physics Simulation, and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESIME.2010.5464607\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 11th International Thermal, Mechanical & Multi-Physics Simulation, and Experiments in Microelectronics and Microsystems (EuroSimE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESIME.2010.5464607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimization of PCB build-up layer configuration for electronic assemblies with active embedded components in the board
The manufacturing process of Printed Circuit Boards (PCB) with embedded active components requires several modifications on the build-up layer configuration, including the use of thinner layers and heterogeneous composite materials. From the point of view of second level interconnects the increase in density and complexity of the build-up of electronic board leads to an increase of the total resin-content. As demonstrated in a previous work, this increase of the ratio between resin and glass has a major consequence on the mechanical behavior of the assemblies, particularly on the fatigue resistance of component solder joints.