连接光纤中的应力集中

J. Malluck, W. W. King
{"title":"连接光纤中的应力集中","authors":"J. Malluck, W. W. King","doi":"10.1115/imece2000-2242","DOIUrl":null,"url":null,"abstract":"\n For the most part, analyses of fiber fractures in connectors have been in the form of postmortem fractography. Typically in these works, characteristics of prefracture stress states have been inferred from fracture surfaces, and plausible qualitative explanations have been advanced about the likely structural mechanics and circumstances leading to fractures. The authors and their colleagues have undertaken a number of investigations of relevant structural mechanics. These have served the useful purpose of elucidating gross mechanisms, but the influence of the fine details of stress distributions have been missing.\n Considered here is a cylindrical-ferrule connector for which, typically, the ferrule is ceramic with an outside diameter of 2.5mm or 1.25mm. The fiber to be terminated is bonded into a small-bore axial hole (capillary) in the ferrule by an epoxy or similar adhesive. In addition, fiber insertion into the capillary is facilitated by ferrule designs that provide a conical entrance cavity leading to the capillary. A very high percentage of fiber failures, both in the laboratory and the field, occur at the transition region between the fiber and the capillary; so analysis is focused on that region.\n The stress distribution within an optical fiber adhesively bonded to a ceramic ferrule is determined by the finite element method for uniform remote tension acting on the fiber. An axisymmetric model is constructed to represent the fiber, epoxy, and geometry of the ferrule under this particular loading condition. The resulting stress distribution is determined within the fiber and the epoxy layer using the ANSYS finite element code. Analysis of the stress distribution reveals the presence of two stress concentrations located at the surface of the fiber as the fiber enters the ferrule. One stress concentration occurs as the fiber encounters the epoxy within the conical cavity. The second stress concentration occurs as the fiber enters the capillary. These stress concentrations when combined with surface damage (flaws) may lead to fiber breakage. Further analysis reveals that a smooth fillet transition between entrance and capillary could significantly reduce the stress concentration at the capillary entrance. Finally, a simulation of epoxy debonding within the entrance cone reveals an increase of stress concentration at the capillary entrance.","PeriodicalId":179094,"journal":{"name":"Packaging of Electronic and Photonic Devices","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stress Concentration in a Connectorized Optical Fiber\",\"authors\":\"J. Malluck, W. W. King\",\"doi\":\"10.1115/imece2000-2242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n For the most part, analyses of fiber fractures in connectors have been in the form of postmortem fractography. Typically in these works, characteristics of prefracture stress states have been inferred from fracture surfaces, and plausible qualitative explanations have been advanced about the likely structural mechanics and circumstances leading to fractures. The authors and their colleagues have undertaken a number of investigations of relevant structural mechanics. These have served the useful purpose of elucidating gross mechanisms, but the influence of the fine details of stress distributions have been missing.\\n Considered here is a cylindrical-ferrule connector for which, typically, the ferrule is ceramic with an outside diameter of 2.5mm or 1.25mm. The fiber to be terminated is bonded into a small-bore axial hole (capillary) in the ferrule by an epoxy or similar adhesive. In addition, fiber insertion into the capillary is facilitated by ferrule designs that provide a conical entrance cavity leading to the capillary. A very high percentage of fiber failures, both in the laboratory and the field, occur at the transition region between the fiber and the capillary; so analysis is focused on that region.\\n The stress distribution within an optical fiber adhesively bonded to a ceramic ferrule is determined by the finite element method for uniform remote tension acting on the fiber. An axisymmetric model is constructed to represent the fiber, epoxy, and geometry of the ferrule under this particular loading condition. The resulting stress distribution is determined within the fiber and the epoxy layer using the ANSYS finite element code. Analysis of the stress distribution reveals the presence of two stress concentrations located at the surface of the fiber as the fiber enters the ferrule. One stress concentration occurs as the fiber encounters the epoxy within the conical cavity. The second stress concentration occurs as the fiber enters the capillary. These stress concentrations when combined with surface damage (flaws) may lead to fiber breakage. Further analysis reveals that a smooth fillet transition between entrance and capillary could significantly reduce the stress concentration at the capillary entrance. Finally, a simulation of epoxy debonding within the entrance cone reveals an increase of stress concentration at the capillary entrance.\",\"PeriodicalId\":179094,\"journal\":{\"name\":\"Packaging of Electronic and Photonic Devices\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Packaging of Electronic and Photonic Devices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2000-2242\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Packaging of Electronic and Photonic Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2000-2242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在大多数情况下,连接件中纤维断裂的分析都是以死后断口学的形式进行的。在这些工作中,通常是从裂缝表面推断出裂缝前应力状态的特征,并对可能的结构力学和导致裂缝的环境提出了似是而非的定性解释。作者和他们的同事已经进行了一些相关的结构力学研究。这些都有助于阐明总体机制,但应力分布的精细细节的影响一直缺失。这里考虑的是一个圆柱形卡圈连接器,通常,卡圈是外径为2.5毫米或1.25毫米的陶瓷。将端接的纤维用环氧树脂或类似的粘合剂粘接到套圈内的小孔轴向孔(毛细管)中。此外,通过提供通向毛细管的锥形入口腔的卡箍设计,可以方便地将纤维插入毛细管。无论是在实验室还是在现场,光纤故障的高百分比发生在光纤和毛细管之间的过渡区域;所以分析集中在那个区域。用有限元法确定粘接在陶瓷卡箍上的光纤内的应力分布,以使作用在光纤上的远端拉力均匀。在这种特殊载荷条件下,建立了轴对称模型来表示纤维、环氧树脂和卡套的几何形状。使用ANSYS有限元程序确定纤维和环氧层内部的应力分布。应力分布分析表明,当纤维进入卡箍时,在纤维表面存在两个应力集中。当纤维在锥形腔内遇到环氧树脂时,会发生应力集中。第二次应力集中发生在纤维进入毛细血管时。当这些应力集中与表面损伤(缺陷)结合时,可能导致纤维断裂。进一步分析表明,入口和毛细管之间的平滑圆角过渡可以显著降低毛细管入口的应力集中。最后,对入口锥内环氧树脂脱粘的模拟表明,在毛细管入口处应力集中增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stress Concentration in a Connectorized Optical Fiber
For the most part, analyses of fiber fractures in connectors have been in the form of postmortem fractography. Typically in these works, characteristics of prefracture stress states have been inferred from fracture surfaces, and plausible qualitative explanations have been advanced about the likely structural mechanics and circumstances leading to fractures. The authors and their colleagues have undertaken a number of investigations of relevant structural mechanics. These have served the useful purpose of elucidating gross mechanisms, but the influence of the fine details of stress distributions have been missing. Considered here is a cylindrical-ferrule connector for which, typically, the ferrule is ceramic with an outside diameter of 2.5mm or 1.25mm. The fiber to be terminated is bonded into a small-bore axial hole (capillary) in the ferrule by an epoxy or similar adhesive. In addition, fiber insertion into the capillary is facilitated by ferrule designs that provide a conical entrance cavity leading to the capillary. A very high percentage of fiber failures, both in the laboratory and the field, occur at the transition region between the fiber and the capillary; so analysis is focused on that region. The stress distribution within an optical fiber adhesively bonded to a ceramic ferrule is determined by the finite element method for uniform remote tension acting on the fiber. An axisymmetric model is constructed to represent the fiber, epoxy, and geometry of the ferrule under this particular loading condition. The resulting stress distribution is determined within the fiber and the epoxy layer using the ANSYS finite element code. Analysis of the stress distribution reveals the presence of two stress concentrations located at the surface of the fiber as the fiber enters the ferrule. One stress concentration occurs as the fiber encounters the epoxy within the conical cavity. The second stress concentration occurs as the fiber enters the capillary. These stress concentrations when combined with surface damage (flaws) may lead to fiber breakage. Further analysis reveals that a smooth fillet transition between entrance and capillary could significantly reduce the stress concentration at the capillary entrance. Finally, a simulation of epoxy debonding within the entrance cone reveals an increase of stress concentration at the capillary entrance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信