MWCNTS阵列采用了具有电荷选择性的纳米通道,可实现高效的生物分子预富集

R. Wu, Yi-Shiuan Wu, Chung-Shi Yang, F. Tseng
{"title":"MWCNTS阵列采用了具有电荷选择性的纳米通道,可实现高效的生物分子预富集","authors":"R. Wu, Yi-Shiuan Wu, Chung-Shi Yang, F. Tseng","doi":"10.1109/SENSOR.2009.5285977","DOIUrl":null,"url":null,"abstract":"This paper presents a study of electrokinetic transport in a nano-fluidic chip that allows for the selection and pre-concentration of molecular mixtures by a high density multi-wall carbon nanotubes array (MCNTs) in nano-channels. Parylene (poly(p-xylylene) was deposited on MWCNTs walls as a dielectric material, the surface charge characters and density could adjusted when an induced polarizes filed was applied. The MCNTs array was used as an induced-surface charge filter to attract the charged molecules on the wall surface by van der Waals and electrostatic force. The surface charge of MCNTs is inversely proportional to the channel wall thickness and proportional to the dielectric constant of Parylene thin layer as well as the applied external electric-field. The competition between electroosmotic dragging force and nonlinear electrophoretic forces induced by polarization effect is suggested responsible for the setup of two preconcentration regimes at both cathodic and anodic sides of the nanochannel. A 105–6 folds high concentration capability of FITC-labelied IgG has been achieved in 15 min in this device which is not easily carried out by standard MEMS process. The fabrication of this device with direct growth of MWCNTs inside nanochannel is first reported to apply to electro-preconcentration.","PeriodicalId":247826,"journal":{"name":"TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference","volume":"174 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MWCNTS array incorporated nanochannel with charge-selectivity for high efficient biomolecule preconcentration\",\"authors\":\"R. Wu, Yi-Shiuan Wu, Chung-Shi Yang, F. Tseng\",\"doi\":\"10.1109/SENSOR.2009.5285977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a study of electrokinetic transport in a nano-fluidic chip that allows for the selection and pre-concentration of molecular mixtures by a high density multi-wall carbon nanotubes array (MCNTs) in nano-channels. Parylene (poly(p-xylylene) was deposited on MWCNTs walls as a dielectric material, the surface charge characters and density could adjusted when an induced polarizes filed was applied. The MCNTs array was used as an induced-surface charge filter to attract the charged molecules on the wall surface by van der Waals and electrostatic force. The surface charge of MCNTs is inversely proportional to the channel wall thickness and proportional to the dielectric constant of Parylene thin layer as well as the applied external electric-field. The competition between electroosmotic dragging force and nonlinear electrophoretic forces induced by polarization effect is suggested responsible for the setup of two preconcentration regimes at both cathodic and anodic sides of the nanochannel. A 105–6 folds high concentration capability of FITC-labelied IgG has been achieved in 15 min in this device which is not easily carried out by standard MEMS process. The fabrication of this device with direct growth of MWCNTs inside nanochannel is first reported to apply to electro-preconcentration.\",\"PeriodicalId\":247826,\"journal\":{\"name\":\"TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference\",\"volume\":\"174 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SENSOR.2009.5285977\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSOR.2009.5285977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了纳米流控芯片中的电动传输研究,该芯片允许通过纳米通道中的高密度多壁碳纳米管阵列(MCNTs)选择和预浓缩分子混合物。将聚对二甲苯作为介质材料沉积在MWCNTs壁上,在诱导极化场作用下可调节其表面电荷特性和密度。利用纳米管阵列作为感应表面电荷过滤器,利用范德华力和静电力吸引表面带电分子。MCNTs的表面电荷与通道壁厚成反比,与聚苯二甲苯薄层的介电常数和外加电场成正比。电渗透拖曳力和极化效应引起的非线性电泳力之间的竞争导致了纳米通道阴极和阳极两侧的两种预富集机制的建立。该装置在15分钟内实现了fitc标记IgG的105-6倍的高浓度能力,这是标准MEMS工艺不易实现的。本文首次报道了这种在纳米通道内直接生长MWCNTs的器件的制备,并将其应用于电富集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MWCNTS array incorporated nanochannel with charge-selectivity for high efficient biomolecule preconcentration
This paper presents a study of electrokinetic transport in a nano-fluidic chip that allows for the selection and pre-concentration of molecular mixtures by a high density multi-wall carbon nanotubes array (MCNTs) in nano-channels. Parylene (poly(p-xylylene) was deposited on MWCNTs walls as a dielectric material, the surface charge characters and density could adjusted when an induced polarizes filed was applied. The MCNTs array was used as an induced-surface charge filter to attract the charged molecules on the wall surface by van der Waals and electrostatic force. The surface charge of MCNTs is inversely proportional to the channel wall thickness and proportional to the dielectric constant of Parylene thin layer as well as the applied external electric-field. The competition between electroosmotic dragging force and nonlinear electrophoretic forces induced by polarization effect is suggested responsible for the setup of two preconcentration regimes at both cathodic and anodic sides of the nanochannel. A 105–6 folds high concentration capability of FITC-labelied IgG has been achieved in 15 min in this device which is not easily carried out by standard MEMS process. The fabrication of this device with direct growth of MWCNTs inside nanochannel is first reported to apply to electro-preconcentration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信