L. Rahhal, A. Bajolet, C. Diouf, A. Cros, J. Rosa, N. Planes, G. Ghibaudo
{"title":"用Y函数法表征漏极电流局部变异性的新方法","authors":"L. Rahhal, A. Bajolet, C. Diouf, A. Cros, J. Rosa, N. Planes, G. Ghibaudo","doi":"10.1109/ICMTS.2013.6528153","DOIUrl":null,"url":null,"abstract":"Y function is well known to overcome the influence of source/drain series resistance (Rsd) in MOSFETs. In this work we present a new methodology for drain current local variability characterization using Y function method. Thus, we show that the study of Y function statistical variability permits the extraction of threshold voltage (VTH) and current gain factor (β) local variability without the influence of Rsd values. We also demonstrate a simple drain current local variability model taking into account the influence of Rsd and its variability in strong inversion regime. This new VTH and β extraction method, and drain current variability model were applied with success to advanced FDSOI and Bulk devices with different dimensions.","PeriodicalId":142589,"journal":{"name":"2013 IEEE International Conference on Microelectronic Test Structures (ICMTS)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"New methodology for drain current local variability characterization using Y function method\",\"authors\":\"L. Rahhal, A. Bajolet, C. Diouf, A. Cros, J. Rosa, N. Planes, G. Ghibaudo\",\"doi\":\"10.1109/ICMTS.2013.6528153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Y function is well known to overcome the influence of source/drain series resistance (Rsd) in MOSFETs. In this work we present a new methodology for drain current local variability characterization using Y function method. Thus, we show that the study of Y function statistical variability permits the extraction of threshold voltage (VTH) and current gain factor (β) local variability without the influence of Rsd values. We also demonstrate a simple drain current local variability model taking into account the influence of Rsd and its variability in strong inversion regime. This new VTH and β extraction method, and drain current variability model were applied with success to advanced FDSOI and Bulk devices with different dimensions.\",\"PeriodicalId\":142589,\"journal\":{\"name\":\"2013 IEEE International Conference on Microelectronic Test Structures (ICMTS)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Microelectronic Test Structures (ICMTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMTS.2013.6528153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Microelectronic Test Structures (ICMTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMTS.2013.6528153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
New methodology for drain current local variability characterization using Y function method
Y function is well known to overcome the influence of source/drain series resistance (Rsd) in MOSFETs. In this work we present a new methodology for drain current local variability characterization using Y function method. Thus, we show that the study of Y function statistical variability permits the extraction of threshold voltage (VTH) and current gain factor (β) local variability without the influence of Rsd values. We also demonstrate a simple drain current local variability model taking into account the influence of Rsd and its variability in strong inversion regime. This new VTH and β extraction method, and drain current variability model were applied with success to advanced FDSOI and Bulk devices with different dimensions.