采用富锡锡金双层结构无焊剂键合晶圆

C.C. Lee, Jongsung Kim
{"title":"采用富锡锡金双层结构无焊剂键合晶圆","authors":"C.C. Lee, Jongsung Kim","doi":"10.1109/ISAPM.2005.1432057","DOIUrl":null,"url":null,"abstract":"In many devices and packaging applications, it has been an engineering dream to be able to bond two entire wafers of the same material or of different materials with a thin metallic joint. Many new device concepts cannot be implemented because of the lack of this technology. An obvious idea to achieve this is to use solders. However, the need of using flux in the soldering process prohibits achieving void-free and uniform solder joint because flux and flux residues can be easily trapped in the joint, resulting in voids and uneven solder layer. Thus, it seems that a solution to this is to develop a soldering process that does not require the use of flux, i.e, fluxless or flux-free. In this paper, we report our initial success of bonding two 2-inch silicon wafers using Sn-rich Sn-Au dual-layer structure that is produced by electroplating process. No flux is used in the bonding process. It is much harder to achieve fluxless characteristic using Sn-rich Sn-Au alloys than Sn20Au80 eutectic alloy. The resulting Sn-rich solder joint layer, about 10 /spl mu/m in thickness, is very uniform over the entire 2-inch sample. In the initial run, two samples are produced. The quality of the joint is examined using reflection-mode scanning acoustic microscope (SAM) and X-ray micro-imaging technique. Results of these two methods indicate that the joints are of high quality. Of these two samples, the better one shows nearly perfect joint with only 2% of possible void area. More studies and evaluation are needed to further extend this method to larger wafers and to wafer materials other than silicon. This initial success shows that it is indeed possible to bond entire wafers together with a thin metallic joint of high quality.","PeriodicalId":181674,"journal":{"name":"Proceedings. International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces, 2005.","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Wafer bonding using fluxless process with Sn-rich Sn-Au dual-layer structure\",\"authors\":\"C.C. Lee, Jongsung Kim\",\"doi\":\"10.1109/ISAPM.2005.1432057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In many devices and packaging applications, it has been an engineering dream to be able to bond two entire wafers of the same material or of different materials with a thin metallic joint. Many new device concepts cannot be implemented because of the lack of this technology. An obvious idea to achieve this is to use solders. However, the need of using flux in the soldering process prohibits achieving void-free and uniform solder joint because flux and flux residues can be easily trapped in the joint, resulting in voids and uneven solder layer. Thus, it seems that a solution to this is to develop a soldering process that does not require the use of flux, i.e, fluxless or flux-free. In this paper, we report our initial success of bonding two 2-inch silicon wafers using Sn-rich Sn-Au dual-layer structure that is produced by electroplating process. No flux is used in the bonding process. It is much harder to achieve fluxless characteristic using Sn-rich Sn-Au alloys than Sn20Au80 eutectic alloy. The resulting Sn-rich solder joint layer, about 10 /spl mu/m in thickness, is very uniform over the entire 2-inch sample. In the initial run, two samples are produced. The quality of the joint is examined using reflection-mode scanning acoustic microscope (SAM) and X-ray micro-imaging technique. Results of these two methods indicate that the joints are of high quality. Of these two samples, the better one shows nearly perfect joint with only 2% of possible void area. More studies and evaluation are needed to further extend this method to larger wafers and to wafer materials other than silicon. This initial success shows that it is indeed possible to bond entire wafers together with a thin metallic joint of high quality.\",\"PeriodicalId\":181674,\"journal\":{\"name\":\"Proceedings. International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces, 2005.\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISAPM.2005.1432057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAPM.2005.1432057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在许多设备和封装应用中,能够用薄金属接头粘合两个相同材料或不同材料的整个晶圆一直是一个工程梦想。由于缺乏这项技术,许多新设备概念无法实现。实现这一点的一个明显的想法是使用焊料。然而,在焊接过程中使用助焊剂的需要阻碍了实现无空洞和均匀的焊点,因为助焊剂和助焊剂残留物很容易被困在接头中,导致空洞和不均匀的焊点层。因此,解决这一问题的方法似乎是开发一种不需要使用助焊剂的焊接工艺,即无助焊剂或无助焊剂。在本文中,我们报告了我们使用电镀工艺生产的富锡锡金双层结构键合两个2英寸硅晶片的初步成功。焊接过程中不使用助焊剂。使用富锡的Sn-Au合金比使用Sn20Au80共晶合金更难达到无熔剂特性。由此产生的富锡焊点层厚度约为10 /spl μ m,在整个2英寸样品上非常均匀。在最初的运行中,生产了两个样品。采用反射模式扫描声显微镜(SAM)和x射线显微成像技术对接头的质量进行了检测。结果表明,两种方法均能获得良好的关节质量。在这两个样品中,较好的样品显示出接近完美的连接,只有2%的可能空隙面积。需要更多的研究和评估,以进一步将该方法扩展到更大的晶圆和硅以外的晶圆材料。这一初步成功表明,用高质量的薄金属接头将整个晶圆粘合在一起确实是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wafer bonding using fluxless process with Sn-rich Sn-Au dual-layer structure
In many devices and packaging applications, it has been an engineering dream to be able to bond two entire wafers of the same material or of different materials with a thin metallic joint. Many new device concepts cannot be implemented because of the lack of this technology. An obvious idea to achieve this is to use solders. However, the need of using flux in the soldering process prohibits achieving void-free and uniform solder joint because flux and flux residues can be easily trapped in the joint, resulting in voids and uneven solder layer. Thus, it seems that a solution to this is to develop a soldering process that does not require the use of flux, i.e, fluxless or flux-free. In this paper, we report our initial success of bonding two 2-inch silicon wafers using Sn-rich Sn-Au dual-layer structure that is produced by electroplating process. No flux is used in the bonding process. It is much harder to achieve fluxless characteristic using Sn-rich Sn-Au alloys than Sn20Au80 eutectic alloy. The resulting Sn-rich solder joint layer, about 10 /spl mu/m in thickness, is very uniform over the entire 2-inch sample. In the initial run, two samples are produced. The quality of the joint is examined using reflection-mode scanning acoustic microscope (SAM) and X-ray micro-imaging technique. Results of these two methods indicate that the joints are of high quality. Of these two samples, the better one shows nearly perfect joint with only 2% of possible void area. More studies and evaluation are needed to further extend this method to larger wafers and to wafer materials other than silicon. This initial success shows that it is indeed possible to bond entire wafers together with a thin metallic joint of high quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信