可重构数学加速器,用于IoT边缘设备上的超低功耗传感工作负载

Saksham Soni, Dileep Kurian, A. V, A. Sreenath
{"title":"可重构数学加速器,用于IoT边缘设备上的超低功耗传感工作负载","authors":"Saksham Soni, Dileep Kurian, A. V, A. Sreenath","doi":"10.1109/MOS-AK.2019.8902425","DOIUrl":null,"url":null,"abstract":"Fast evolving algorithms in domains like machine learning/AI demand some level of programmability to remain market relevant. Current approaches to programmability such as DSP cores and FPGAs are not energy efficient and hence not suitable for power constrained IoT edge devices. This paper looks at an alternative approach to programmability through a coarse grain reconfigurable accelerator built as a library of mathematical functions implemented on a chassis. This architecture is implemented on Intel 14nm CMOS technology and takes an area of 0.015mm2 consuming less than 100uJ on typical workloads. Sensor fusion algorithms like Kalman and Madgwick filters are mapped onto this IP as a case study to verify the solution. The results show 100x improvement in power and performance compared to software implementation of these algorithm on generic DSP cores.","PeriodicalId":178751,"journal":{"name":"2019 IEEE Conference on Modeling of Systems Circuits and Devices (MOS-AK India)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reconfigurable Math Accelerator for ultra-low power sensing workloads on IoT edge devices\",\"authors\":\"Saksham Soni, Dileep Kurian, A. V, A. Sreenath\",\"doi\":\"10.1109/MOS-AK.2019.8902425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fast evolving algorithms in domains like machine learning/AI demand some level of programmability to remain market relevant. Current approaches to programmability such as DSP cores and FPGAs are not energy efficient and hence not suitable for power constrained IoT edge devices. This paper looks at an alternative approach to programmability through a coarse grain reconfigurable accelerator built as a library of mathematical functions implemented on a chassis. This architecture is implemented on Intel 14nm CMOS technology and takes an area of 0.015mm2 consuming less than 100uJ on typical workloads. Sensor fusion algorithms like Kalman and Madgwick filters are mapped onto this IP as a case study to verify the solution. The results show 100x improvement in power and performance compared to software implementation of these algorithm on generic DSP cores.\",\"PeriodicalId\":178751,\"journal\":{\"name\":\"2019 IEEE Conference on Modeling of Systems Circuits and Devices (MOS-AK India)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Conference on Modeling of Systems Circuits and Devices (MOS-AK India)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MOS-AK.2019.8902425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Conference on Modeling of Systems Circuits and Devices (MOS-AK India)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MOS-AK.2019.8902425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在机器学习/人工智能等领域,快速发展的算法需要一定程度的可编程性来保持市场相关性。目前的可编程性方法,如DSP内核和fpga,并不节能,因此不适合功率受限的物联网边缘设备。本文着眼于通过在底盘上实现的数学函数库构建粗粒度可重构加速器来实现可编程性的另一种方法。该架构采用英特尔14nm CMOS技术实现,在典型工作负载下占用0.015mm2的面积,功耗小于100uJ。Kalman和Madgwick滤波器等传感器融合算法被映射到该IP上,作为验证解决方案的案例研究。结果表明,与在通用DSP内核上软件实现相比,该算法的功耗和性能提高了100倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reconfigurable Math Accelerator for ultra-low power sensing workloads on IoT edge devices
Fast evolving algorithms in domains like machine learning/AI demand some level of programmability to remain market relevant. Current approaches to programmability such as DSP cores and FPGAs are not energy efficient and hence not suitable for power constrained IoT edge devices. This paper looks at an alternative approach to programmability through a coarse grain reconfigurable accelerator built as a library of mathematical functions implemented on a chassis. This architecture is implemented on Intel 14nm CMOS technology and takes an area of 0.015mm2 consuming less than 100uJ on typical workloads. Sensor fusion algorithms like Kalman and Madgwick filters are mapped onto this IP as a case study to verify the solution. The results show 100x improvement in power and performance compared to software implementation of these algorithm on generic DSP cores.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信