陶瓷衬底中的局部放电——电场强度模拟与相分辨局部放电测量的相关性

C. F. Bayer, U. Waltrich, Amal Soueidan, E. Baer, A. Schletz
{"title":"陶瓷衬底中的局部放电——电场强度模拟与相分辨局部放电测量的相关性","authors":"C. F. Bayer, U. Waltrich, Amal Soueidan, E. Baer, A. Schletz","doi":"10.1109/ICEP.2016.7486884","DOIUrl":null,"url":null,"abstract":"High voltages and the edges of the metallization on ceramic substrates (AMB, DBA, DBC, HTCC, LTCC) lead to high electric field strengths. In the vicinity of the metal edges these high electric field strengths induce partial discharges in the ceramic insulation and in the covering synthetics and thereby represent one key degradation mechanism of power modules. In this work the correlation of the simulated electric field strength with phase resolved partial discharge (PRPD) measurements has been investigated. For the simulation of the electric field strength a new method was used to bypass numerical artifacts. The simulated values showed that it is possible to reduce the electric field strength by an adaption of the metallization structure. There the distance of the upper and the lower metallization to the rim of the ceramic was changed relative to each other. Due to this variation a reduction of the electric field strength by about 30 % can be reached by choosing the optimum distance compared to state of the art modules. In PRPD measurements for ceramic substrates (AlN/Al2O3 by DCB) we examined whether the field reduction leads to higher partial discharge inception voltages (PDIV). The measurements were executed on layouts with different dimensions of the upper and lower metallization relative to each other as well as for 3 different thicknesses of the ceramic insulation (1 mm and 0.63 mm AlN DBC, 0.63 mm and 0.38 mm Al2O3 DBC) layer. An increase from 20 % to 35 % of the PDIV was measured for layouts which were designed according to the findings from the simulation with respect to field strength reduction. Finally, the calculated electric field strength and the measured PDIV were correlated.","PeriodicalId":343912,"journal":{"name":"2016 International Conference on Electronics Packaging (ICEP)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Partial discharges in ceramic substrates - correlation of electric field strength simulations with phase resolved partial discharge measurements\",\"authors\":\"C. F. Bayer, U. Waltrich, Amal Soueidan, E. Baer, A. Schletz\",\"doi\":\"10.1109/ICEP.2016.7486884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High voltages and the edges of the metallization on ceramic substrates (AMB, DBA, DBC, HTCC, LTCC) lead to high electric field strengths. In the vicinity of the metal edges these high electric field strengths induce partial discharges in the ceramic insulation and in the covering synthetics and thereby represent one key degradation mechanism of power modules. In this work the correlation of the simulated electric field strength with phase resolved partial discharge (PRPD) measurements has been investigated. For the simulation of the electric field strength a new method was used to bypass numerical artifacts. The simulated values showed that it is possible to reduce the electric field strength by an adaption of the metallization structure. There the distance of the upper and the lower metallization to the rim of the ceramic was changed relative to each other. Due to this variation a reduction of the electric field strength by about 30 % can be reached by choosing the optimum distance compared to state of the art modules. In PRPD measurements for ceramic substrates (AlN/Al2O3 by DCB) we examined whether the field reduction leads to higher partial discharge inception voltages (PDIV). The measurements were executed on layouts with different dimensions of the upper and lower metallization relative to each other as well as for 3 different thicknesses of the ceramic insulation (1 mm and 0.63 mm AlN DBC, 0.63 mm and 0.38 mm Al2O3 DBC) layer. An increase from 20 % to 35 % of the PDIV was measured for layouts which were designed according to the findings from the simulation with respect to field strength reduction. Finally, the calculated electric field strength and the measured PDIV were correlated.\",\"PeriodicalId\":343912,\"journal\":{\"name\":\"2016 International Conference on Electronics Packaging (ICEP)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Electronics Packaging (ICEP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEP.2016.7486884\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Electronics Packaging (ICEP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEP.2016.7486884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

陶瓷基板(AMB, DBA, DBC, HTCC, LTCC)上的高电压和金属化边缘导致高电场强度。在金属边缘附近,这些高电场强度在陶瓷绝缘和覆盖合成材料中引起局部放电,从而代表了功率模块的一个关键降解机制。本文研究了模拟电场强度与相分辨局部放电(PRPD)测量值的相关性。为了模拟电场强度,采用了一种新的方法来绕过数值伪影。模拟结果表明,可以通过调整金属化结构来降低电场强度。在那里,上下金属化到陶瓷边缘的距离相对变化。由于这种变化,通过选择与最先进模块相比的最佳距离,可以将电场强度降低约30%。在陶瓷衬底(AlN/Al2O3通过DCB)的PRPD测量中,我们研究了电场减少是否会导致更高的局部放电起始电压(PDIV)。测量是在不同尺寸的上下金属化布局上进行的,以及3种不同厚度的陶瓷绝缘层(1 mm和0.63 mm AlN DBC, 0.63 mm和0.38 mm Al2O3 DBC)。根据模拟结果设计的布局在场强降低方面的PDIV增加了20%至35%。最后,将计算的电场强度与实测的PDIV进行了相关性分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Partial discharges in ceramic substrates - correlation of electric field strength simulations with phase resolved partial discharge measurements
High voltages and the edges of the metallization on ceramic substrates (AMB, DBA, DBC, HTCC, LTCC) lead to high electric field strengths. In the vicinity of the metal edges these high electric field strengths induce partial discharges in the ceramic insulation and in the covering synthetics and thereby represent one key degradation mechanism of power modules. In this work the correlation of the simulated electric field strength with phase resolved partial discharge (PRPD) measurements has been investigated. For the simulation of the electric field strength a new method was used to bypass numerical artifacts. The simulated values showed that it is possible to reduce the electric field strength by an adaption of the metallization structure. There the distance of the upper and the lower metallization to the rim of the ceramic was changed relative to each other. Due to this variation a reduction of the electric field strength by about 30 % can be reached by choosing the optimum distance compared to state of the art modules. In PRPD measurements for ceramic substrates (AlN/Al2O3 by DCB) we examined whether the field reduction leads to higher partial discharge inception voltages (PDIV). The measurements were executed on layouts with different dimensions of the upper and lower metallization relative to each other as well as for 3 different thicknesses of the ceramic insulation (1 mm and 0.63 mm AlN DBC, 0.63 mm and 0.38 mm Al2O3 DBC) layer. An increase from 20 % to 35 % of the PDIV was measured for layouts which were designed according to the findings from the simulation with respect to field strength reduction. Finally, the calculated electric field strength and the measured PDIV were correlated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信