可测性测度近似算法的分析与改进

J. Bitner, J. Jain, J. Abraham, D. Fussell
{"title":"可测性测度近似算法的分析与改进","authors":"J. Bitner, J. Jain, J. Abraham, D. Fussell","doi":"10.1109/ATS.1994.367233","DOIUrl":null,"url":null,"abstract":"This paper presents a theoretical framework for the study of algorithms for approximating testability measures. To illustrate its application, we consider two well-known algorithms. It is shown empirically that both algorithms perform very poorly on several circuits of realistic size. For some circuits, an equally good approximation to the testability measure can be achieved by a random number generator or a \"0th order\" approximation algorithm that always returns a constant 1/2. Analytically, we present several circuits for which the performance of these algorithms is arbitrarily bad. The analysis is then used to identify their weaknesses, and procedures are suggested through which such unpredictable performances may be improved. One procedure is discussed in detail and an order of magnitude improvement in accuracy results.<<ETX>>","PeriodicalId":182440,"journal":{"name":"Proceedings of IEEE 3rd Asian Test Symposium (ATS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis and improvement of testability measure approximation algorithms\",\"authors\":\"J. Bitner, J. Jain, J. Abraham, D. Fussell\",\"doi\":\"10.1109/ATS.1994.367233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a theoretical framework for the study of algorithms for approximating testability measures. To illustrate its application, we consider two well-known algorithms. It is shown empirically that both algorithms perform very poorly on several circuits of realistic size. For some circuits, an equally good approximation to the testability measure can be achieved by a random number generator or a \\\"0th order\\\" approximation algorithm that always returns a constant 1/2. Analytically, we present several circuits for which the performance of these algorithms is arbitrarily bad. The analysis is then used to identify their weaknesses, and procedures are suggested through which such unpredictable performances may be improved. One procedure is discussed in detail and an order of magnitude improvement in accuracy results.<<ETX>>\",\"PeriodicalId\":182440,\"journal\":{\"name\":\"Proceedings of IEEE 3rd Asian Test Symposium (ATS)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of IEEE 3rd Asian Test Symposium (ATS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ATS.1994.367233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE 3rd Asian Test Symposium (ATS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATS.1994.367233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一个研究可测试性测度近似算法的理论框架。为了说明它的应用,我们考虑两个众所周知的算法。经验表明,这两种算法在实际大小的几个电路上表现非常差。对于某些电路,同样好的可测试性度量近似值可以通过随机数生成器或总是返回常数1/2的“0阶”近似值算法来实现。从分析的角度,我们提出了几个电路,其中这些算法的性能是任意差的。然后使用分析来确定它们的弱点,并提出改进这些不可预测的性能的程序。详细讨论了一种方法,结果精度提高了一个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis and improvement of testability measure approximation algorithms
This paper presents a theoretical framework for the study of algorithms for approximating testability measures. To illustrate its application, we consider two well-known algorithms. It is shown empirically that both algorithms perform very poorly on several circuits of realistic size. For some circuits, an equally good approximation to the testability measure can be achieved by a random number generator or a "0th order" approximation algorithm that always returns a constant 1/2. Analytically, we present several circuits for which the performance of these algorithms is arbitrarily bad. The analysis is then used to identify their weaknesses, and procedures are suggested through which such unpredictable performances may be improved. One procedure is discussed in detail and an order of magnitude improvement in accuracy results.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信