{"title":"基于电荷阱产生与电荷击穿相关性的超薄介质击穿模型","authors":"P. P. Apte, K. Saraswat","doi":"10.1109/RELPHY.1994.307845","DOIUrl":null,"url":null,"abstract":"Degradation in ultrathin dielectric films due to high-field stress is a critical concern in ULSI technology. We investigate here the link between trap-generation and breakdown as a function of five technologically relevant parameters, namely stress-current density (10/sup -3/-10/sup 1/ A/cm/sup 2/), oxide thickness (70-250 A), stress temperature (25-100 /spl deg/C), charge-injection polarity (gate vs substrate), and nitridation of pure oxide (using N/sub 2/O). For all five parameters, a strong correlation has been observed between oxide degradation and the generation of new traps by physical bondbreaking.<<ETX>>","PeriodicalId":276224,"journal":{"name":"Proceedings of 1994 IEEE International Reliability Physics Symposium","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Modeling ultrathin dielectric breakdown on correlation of charge trap-generation to charge-to-breakdown\",\"authors\":\"P. P. Apte, K. Saraswat\",\"doi\":\"10.1109/RELPHY.1994.307845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Degradation in ultrathin dielectric films due to high-field stress is a critical concern in ULSI technology. We investigate here the link between trap-generation and breakdown as a function of five technologically relevant parameters, namely stress-current density (10/sup -3/-10/sup 1/ A/cm/sup 2/), oxide thickness (70-250 A), stress temperature (25-100 /spl deg/C), charge-injection polarity (gate vs substrate), and nitridation of pure oxide (using N/sub 2/O). For all five parameters, a strong correlation has been observed between oxide degradation and the generation of new traps by physical bondbreaking.<<ETX>>\",\"PeriodicalId\":276224,\"journal\":{\"name\":\"Proceedings of 1994 IEEE International Reliability Physics Symposium\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 IEEE International Reliability Physics Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RELPHY.1994.307845\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Reliability Physics Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RELPHY.1994.307845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
摘要
超薄介质薄膜在高场应力作用下的劣化是ULSI技术中的一个关键问题。我们在这里研究了陷阱产生和击穿之间的联系,作为五个技术相关参数的函数,即应力电流密度(10/sup -3/-10/sup 1/ a /cm/sup 2/),氧化物厚度(70-250 a),应力温度(25-100 /spl℃),电荷注入极性(栅极与衬底),以及纯氧化物的氮化(使用N/sub 2/O)。对于所有这五个参数,已经观察到氧化物降解与通过物理断键产生新陷阱之间存在很强的相关性。
Modeling ultrathin dielectric breakdown on correlation of charge trap-generation to charge-to-breakdown
Degradation in ultrathin dielectric films due to high-field stress is a critical concern in ULSI technology. We investigate here the link between trap-generation and breakdown as a function of five technologically relevant parameters, namely stress-current density (10/sup -3/-10/sup 1/ A/cm/sup 2/), oxide thickness (70-250 A), stress temperature (25-100 /spl deg/C), charge-injection polarity (gate vs substrate), and nitridation of pure oxide (using N/sub 2/O). For all five parameters, a strong correlation has been observed between oxide degradation and the generation of new traps by physical bondbreaking.<>