面向图像恢复的轻量级故障检测与管理

C. Bolchini, Luca Cassano, A. Miele, Matteo Biasielli
{"title":"面向图像恢复的轻量级故障检测与管理","authors":"C. Bolchini, Luca Cassano, A. Miele, Matteo Biasielli","doi":"10.1109/DFT50435.2020.9250844","DOIUrl":null,"url":null,"abstract":"Image restoration is generally employed to recover an image that has been blurred, for example, for noise suppression purposes. The Richardson-Lucy (RL) algorithm is a widely used iterative approach for image restoration. In this paper we propose a lightweight application-specific fault detection and management scheme for RL that exploits two specific characteristics of such algorithm: i) there is a strong correlation between the input and output images of each iteration, and ii) the algorithm is often able to produce a final output that is very similar to the expected one although the output of an intermediate iteration has been corrupted by a fault. The proposed scheme exploits these characteristics to detect the occurrence of a fault without requiring duplication and to determine whether the error in the output of an intermediate iteration of the algorithm would be absorbed (thus avoiding image dropping and algorithm reexecution) or whether the image has to be discarded and the overall elaboration to be re-executed. An experimental campaign demonstrated that our scheme allows for an execution time reduction of about 54% w.r.t. the classical Duplication with Comparison (DWC), still providing about 99% fault detection.","PeriodicalId":340119,"journal":{"name":"2020 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lightweight Fault Detection and Management for Image Restoration\",\"authors\":\"C. Bolchini, Luca Cassano, A. Miele, Matteo Biasielli\",\"doi\":\"10.1109/DFT50435.2020.9250844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image restoration is generally employed to recover an image that has been blurred, for example, for noise suppression purposes. The Richardson-Lucy (RL) algorithm is a widely used iterative approach for image restoration. In this paper we propose a lightweight application-specific fault detection and management scheme for RL that exploits two specific characteristics of such algorithm: i) there is a strong correlation between the input and output images of each iteration, and ii) the algorithm is often able to produce a final output that is very similar to the expected one although the output of an intermediate iteration has been corrupted by a fault. The proposed scheme exploits these characteristics to detect the occurrence of a fault without requiring duplication and to determine whether the error in the output of an intermediate iteration of the algorithm would be absorbed (thus avoiding image dropping and algorithm reexecution) or whether the image has to be discarded and the overall elaboration to be re-executed. An experimental campaign demonstrated that our scheme allows for an execution time reduction of about 54% w.r.t. the classical Duplication with Comparison (DWC), still providing about 99% fault detection.\",\"PeriodicalId\":340119,\"journal\":{\"name\":\"2020 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DFT50435.2020.9250844\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DFT50435.2020.9250844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图像恢复通常用于恢复已模糊的图像,例如,用于抑制噪声。Richardson-Lucy (RL)算法是一种广泛应用于图像恢复的迭代方法。在本文中,我们为强化学习提出了一种轻量级的特定于应用程序的故障检测和管理方案,该方案利用了这种算法的两个特定特征:i)每次迭代的输入和输出图像之间存在很强的相关性,ii)尽管中间迭代的输出已被故障损坏,但该算法通常能够产生与预期非常相似的最终输出。所提出的方案利用这些特征在不需要重复的情况下检测故障的发生,并确定算法中间迭代输出中的错误是否会被吸收(从而避免图像丢失和算法重新执行),或者是否必须丢弃图像并重新执行整体细化。实验表明,我们的方案允许执行时间比经典的复制比较(DWC)减少54%,仍然提供约99%的故障检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lightweight Fault Detection and Management for Image Restoration
Image restoration is generally employed to recover an image that has been blurred, for example, for noise suppression purposes. The Richardson-Lucy (RL) algorithm is a widely used iterative approach for image restoration. In this paper we propose a lightweight application-specific fault detection and management scheme for RL that exploits two specific characteristics of such algorithm: i) there is a strong correlation between the input and output images of each iteration, and ii) the algorithm is often able to produce a final output that is very similar to the expected one although the output of an intermediate iteration has been corrupted by a fault. The proposed scheme exploits these characteristics to detect the occurrence of a fault without requiring duplication and to determine whether the error in the output of an intermediate iteration of the algorithm would be absorbed (thus avoiding image dropping and algorithm reexecution) or whether the image has to be discarded and the overall elaboration to be re-executed. An experimental campaign demonstrated that our scheme allows for an execution time reduction of about 54% w.r.t. the classical Duplication with Comparison (DWC), still providing about 99% fault detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信