3D集成电路中TSV阵列的功率带宽权衡及TSV- rdl结设计挑战

Wei Yao, F. Shi, Lei He, Siming Pan, B. Achkir, Li Li
{"title":"3D集成电路中TSV阵列的功率带宽权衡及TSV- rdl结设计挑战","authors":"Wei Yao, F. Shi, Lei He, Siming Pan, B. Achkir, Li Li","doi":"10.1109/EPEPS.2012.6457847","DOIUrl":null,"url":null,"abstract":"Through-silicon-via (TSV) enables vertical connectivity between stacked chips or interposer and is a key technology for three-dimensional (3D) ICs. In this paper, we study the signal integrity issues of TSV-based 3D IC with high-speed signaling based on 3D electromagnetic field solver and SPICE simulations. Unlike other existing works, our study focuses on an array of TSVs and includes power and bandwidth trade-off between different signaling and termination techniques, such as single-ended, differential and reduced-swing signaling. From our study, to achieve the best power efficiency, unterminated single-ended reduced-swing signaling should be applied, while terminated single-ended signaling can provide the maximum bandwidth. Beyond TSV, critical design challenges for the junction structure between TSVs and RDL traces are also revealed and analyzed. Result shows that at 20GHz, the fanout-like junction structure could cause more than 10dB return loss (S11) degradation when changing TSV pitch from 50μm to 200μm and even contribute more insertion loss (S21) than the TSV itself.","PeriodicalId":188377,"journal":{"name":"2012 IEEE 21st Conference on Electrical Performance of Electronic Packaging and Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Power-bandwidth trade-off on TSV array in 3D IC and TSV-RDL junction design challenges\",\"authors\":\"Wei Yao, F. Shi, Lei He, Siming Pan, B. Achkir, Li Li\",\"doi\":\"10.1109/EPEPS.2012.6457847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Through-silicon-via (TSV) enables vertical connectivity between stacked chips or interposer and is a key technology for three-dimensional (3D) ICs. In this paper, we study the signal integrity issues of TSV-based 3D IC with high-speed signaling based on 3D electromagnetic field solver and SPICE simulations. Unlike other existing works, our study focuses on an array of TSVs and includes power and bandwidth trade-off between different signaling and termination techniques, such as single-ended, differential and reduced-swing signaling. From our study, to achieve the best power efficiency, unterminated single-ended reduced-swing signaling should be applied, while terminated single-ended signaling can provide the maximum bandwidth. Beyond TSV, critical design challenges for the junction structure between TSVs and RDL traces are also revealed and analyzed. Result shows that at 20GHz, the fanout-like junction structure could cause more than 10dB return loss (S11) degradation when changing TSV pitch from 50μm to 200μm and even contribute more insertion loss (S21) than the TSV itself.\",\"PeriodicalId\":188377,\"journal\":{\"name\":\"2012 IEEE 21st Conference on Electrical Performance of Electronic Packaging and Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 21st Conference on Electrical Performance of Electronic Packaging and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPEPS.2012.6457847\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 21st Conference on Electrical Performance of Electronic Packaging and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEPS.2012.6457847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

通过硅通孔(TSV)实现堆叠芯片或中间层之间的垂直连接,是三维(3D)集成电路的关键技术。本文基于三维电磁场求解器和SPICE仿真,研究了基于tsv的高速信令三维集成电路的信号完整性问题。与其他现有工作不同,我们的研究侧重于一系列tsv,包括不同信令和终端技术之间的功率和带宽权衡,如单端、差分和减摆信令。从我们的研究来看,为了达到最佳的功率效率,应该采用无端接单端减摆信令,而端接单端信令可以提供最大的带宽。除了TSV, TSV和RDL走线之间结结构的关键设计挑战也被揭示和分析。结果表明,在20GHz时,当TSV间距从50μm变化到200μm时,类扇出结结构会导致10dB以上的回波损耗(S11)下降,甚至比TSV本身造成更大的插入损耗(S21)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Power-bandwidth trade-off on TSV array in 3D IC and TSV-RDL junction design challenges
Through-silicon-via (TSV) enables vertical connectivity between stacked chips or interposer and is a key technology for three-dimensional (3D) ICs. In this paper, we study the signal integrity issues of TSV-based 3D IC with high-speed signaling based on 3D electromagnetic field solver and SPICE simulations. Unlike other existing works, our study focuses on an array of TSVs and includes power and bandwidth trade-off between different signaling and termination techniques, such as single-ended, differential and reduced-swing signaling. From our study, to achieve the best power efficiency, unterminated single-ended reduced-swing signaling should be applied, while terminated single-ended signaling can provide the maximum bandwidth. Beyond TSV, critical design challenges for the junction structure between TSVs and RDL traces are also revealed and analyzed. Result shows that at 20GHz, the fanout-like junction structure could cause more than 10dB return loss (S11) degradation when changing TSV pitch from 50μm to 200μm and even contribute more insertion loss (S21) than the TSV itself.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信