人工智能加速器结构故障的功能临界分类

Arjun Chaudhuri, Jonti Talukdar, Fei Su, K. Chakrabarty
{"title":"人工智能加速器结构故障的功能临界分类","authors":"Arjun Chaudhuri, Jonti Talukdar, Fei Su, K. Chakrabarty","doi":"10.1109/ITC44778.2020.9325272","DOIUrl":null,"url":null,"abstract":"The ubiquitous application of deep neural networks (DNNs) has led to a rise in demand for artificial intelligence (AI) accelerators. This paper studies the problem of classifying structural faults in such an accelerator based on their functional criticality. We analyze the impact of stuck-at faults in the processing elements (PEs) of a $128 \\times 128$ systolic array designed to perform classification on the MNIST dataset using both 32-bit and 16-bit data paths. We present a two-tier machine-learning (ML) based method to assess the functional criticality of these faults. We address the problem of minimizing misclassification by utilizing generative adversarial networks (GANs). The two-tier ML/GAN-based criticality assessment method leads to less than 1% test escapes during functional criticality evaluation.","PeriodicalId":251504,"journal":{"name":"2020 IEEE International Test Conference (ITC)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Functional Criticality Classification of Structural Faults in AI Accelerators\",\"authors\":\"Arjun Chaudhuri, Jonti Talukdar, Fei Su, K. Chakrabarty\",\"doi\":\"10.1109/ITC44778.2020.9325272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ubiquitous application of deep neural networks (DNNs) has led to a rise in demand for artificial intelligence (AI) accelerators. This paper studies the problem of classifying structural faults in such an accelerator based on their functional criticality. We analyze the impact of stuck-at faults in the processing elements (PEs) of a $128 \\\\times 128$ systolic array designed to perform classification on the MNIST dataset using both 32-bit and 16-bit data paths. We present a two-tier machine-learning (ML) based method to assess the functional criticality of these faults. We address the problem of minimizing misclassification by utilizing generative adversarial networks (GANs). The two-tier ML/GAN-based criticality assessment method leads to less than 1% test escapes during functional criticality evaluation.\",\"PeriodicalId\":251504,\"journal\":{\"name\":\"2020 IEEE International Test Conference (ITC)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Test Conference (ITC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITC44778.2020.9325272\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Test Conference (ITC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITC44778.2020.9325272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

深度神经网络(dnn)的广泛应用导致了对人工智能(AI)加速器的需求上升。本文研究了基于功能临界度的加速器结构故障分类问题。我们分析了一个$128 \times 128$ systolic阵列的处理元素(pe)中卡滞故障的影响,该阵列设计用于使用32位和16位数据路径对MNIST数据集执行分类。我们提出了一种基于两层机器学习(ML)的方法来评估这些故障的功能临界性。我们通过使用生成对抗网络(GANs)来解决最小化错误分类的问题。基于两层ML/ gan的临界性评估方法在功能临界性评估期间导致不到1%的测试逃逸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Functional Criticality Classification of Structural Faults in AI Accelerators
The ubiquitous application of deep neural networks (DNNs) has led to a rise in demand for artificial intelligence (AI) accelerators. This paper studies the problem of classifying structural faults in such an accelerator based on their functional criticality. We analyze the impact of stuck-at faults in the processing elements (PEs) of a $128 \times 128$ systolic array designed to perform classification on the MNIST dataset using both 32-bit and 16-bit data paths. We present a two-tier machine-learning (ML) based method to assess the functional criticality of these faults. We address the problem of minimizing misclassification by utilizing generative adversarial networks (GANs). The two-tier ML/GAN-based criticality assessment method leads to less than 1% test escapes during functional criticality evaluation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信