快速准确的半导体晶圆缺陷簇自动提取

M. Ooi, Chris Chan, W. J. Tee, Y. Kuang, L. Kleeman, S. Demidenko
{"title":"快速准确的半导体晶圆缺陷簇自动提取","authors":"M. Ooi, Chris Chan, W. J. Tee, Y. Kuang, L. Kleeman, S. Demidenko","doi":"10.1109/DELTA.2010.66","DOIUrl":null,"url":null,"abstract":"Reduction in integrated circuit (IC) half technology, which will no longer be sustainable by traditional fault isolation and failure analysis techniques. There is an urgent need for diagnostic software tools with (which manifest as clusters) observed from manufacturing defects can be traced back to a specific process, equipment or technology, a novel data mining algorithm defects from test data logs. This algorithm and provides accurate detection of 99%.","PeriodicalId":421336,"journal":{"name":"2010 Fifth IEEE International Symposium on Electronic Design, Test & Applications","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Fast and Accurate Automatic Defect CLuster Extraction for Semiconductor Wafers\",\"authors\":\"M. Ooi, Chris Chan, W. J. Tee, Y. Kuang, L. Kleeman, S. Demidenko\",\"doi\":\"10.1109/DELTA.2010.66\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reduction in integrated circuit (IC) half technology, which will no longer be sustainable by traditional fault isolation and failure analysis techniques. There is an urgent need for diagnostic software tools with (which manifest as clusters) observed from manufacturing defects can be traced back to a specific process, equipment or technology, a novel data mining algorithm defects from test data logs. This algorithm and provides accurate detection of 99%.\",\"PeriodicalId\":421336,\"journal\":{\"name\":\"2010 Fifth IEEE International Symposium on Electronic Design, Test & Applications\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Fifth IEEE International Symposium on Electronic Design, Test & Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DELTA.2010.66\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Fifth IEEE International Symposium on Electronic Design, Test & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DELTA.2010.66","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

集成电路(IC)半技术的减少,传统的故障隔离和故障分析技术将不再可持续。目前迫切需要一种诊断软件工具,可以将从制造缺陷中观察到的(表现为集群)追溯到特定的过程、设备或技术,一种新的数据挖掘算法,从测试数据日志中发现缺陷。该算法提供了99%的检测准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast and Accurate Automatic Defect CLuster Extraction for Semiconductor Wafers
Reduction in integrated circuit (IC) half technology, which will no longer be sustainable by traditional fault isolation and failure analysis techniques. There is an urgent need for diagnostic software tools with (which manifest as clusters) observed from manufacturing defects can be traced back to a specific process, equipment or technology, a novel data mining algorithm defects from test data logs. This algorithm and provides accurate detection of 99%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信