{"title":"微型直接甲醇燃料电池在PDMS中的快速成型与微通道集成Nafion条带","authors":"M. Shen, S. Walter, M. Gijs","doi":"10.1109/SENSOR.2009.5285379","DOIUrl":null,"url":null,"abstract":"We demonstrate a planar direct methanol fuel cell by integrating a 200 µm-wide Nafion strip in a polydimethylsiloxane (PDMS) structure. The design is based on two 200 µm-wide parallel microfluidic channels, sandwiching the Nafion strip. We mechanically clamp the PDMS/ Nafion assembly with a catalyst-covered glass chip and use 1 M CH<inf>3</inf>OH/ 0.5 M H<inf>2</inf>SO<inf>4</inf> as fuel in the anodic channel and O<inf>2</inf>-saturated 0.5 M H<inf>2</inf>SO<inf>4</inf> as oxidant solution in the cathodic channel. The fuel cell has a stable maximum power density of 0.52 mW/cm<sup>2</sup> at room temperature with fuel and oxidant flow rates in the 20–160 µL/min range.","PeriodicalId":247826,"journal":{"name":"TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Rapid prototyping of micro-direct methanol fuel cell in PDMS with microchannel-integrated Nafion strip\",\"authors\":\"M. Shen, S. Walter, M. Gijs\",\"doi\":\"10.1109/SENSOR.2009.5285379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrate a planar direct methanol fuel cell by integrating a 200 µm-wide Nafion strip in a polydimethylsiloxane (PDMS) structure. The design is based on two 200 µm-wide parallel microfluidic channels, sandwiching the Nafion strip. We mechanically clamp the PDMS/ Nafion assembly with a catalyst-covered glass chip and use 1 M CH<inf>3</inf>OH/ 0.5 M H<inf>2</inf>SO<inf>4</inf> as fuel in the anodic channel and O<inf>2</inf>-saturated 0.5 M H<inf>2</inf>SO<inf>4</inf> as oxidant solution in the cathodic channel. The fuel cell has a stable maximum power density of 0.52 mW/cm<sup>2</sup> at room temperature with fuel and oxidant flow rates in the 20–160 µL/min range.\",\"PeriodicalId\":247826,\"journal\":{\"name\":\"TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SENSOR.2009.5285379\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSOR.2009.5285379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
摘要
我们通过在聚二甲基硅氧烷(PDMS)结构中集成200微米宽的Nafion条,展示了一种平面直接甲醇燃料电池。该设计基于两个200微米宽的平行微流体通道,夹在Nafion条带上。我们用覆盖催化剂的玻璃芯片机械夹紧PDMS/ Nafion组件,并在阳极通道中使用1 M CH3OH/ 0.5 M H2SO4作为燃料,在阴极通道中使用o2饱和的0.5 M H2SO4作为氧化剂溶液。在室温下,燃料和氧化剂流量在20-160 μ L/min范围内,燃料电池的最大功率密度稳定在0.52 mW/cm2。
Rapid prototyping of micro-direct methanol fuel cell in PDMS with microchannel-integrated Nafion strip
We demonstrate a planar direct methanol fuel cell by integrating a 200 µm-wide Nafion strip in a polydimethylsiloxane (PDMS) structure. The design is based on two 200 µm-wide parallel microfluidic channels, sandwiching the Nafion strip. We mechanically clamp the PDMS/ Nafion assembly with a catalyst-covered glass chip and use 1 M CH3OH/ 0.5 M H2SO4 as fuel in the anodic channel and O2-saturated 0.5 M H2SO4 as oxidant solution in the cathodic channel. The fuel cell has a stable maximum power density of 0.52 mW/cm2 at room temperature with fuel and oxidant flow rates in the 20–160 µL/min range.