A. Sahoo, S. Frégonèse, M. Weiss, C. Maneux, T. Zimmer
{"title":"SiGe HBTs温度相关热阻的可扩展模型","authors":"A. Sahoo, S. Frégonèse, M. Weiss, C. Maneux, T. Zimmer","doi":"10.1109/BCTM.2013.6798137","DOIUrl":null,"url":null,"abstract":"This paper presents a geometry scalable approach for temperature dependent thermal resistance (RTH) calculations in trench-isolated SiGe heterojunction bipolar transistors (HBTs). The model is able to predict the RTH at any temperature and power dissipation (Pdiss). The temperature dependency is obtained by discretizing the heat flow region into n-number of elementary slices depending on the temperature gradient. RTHs of each slice are calculated using temperature dependent thermal conductivity. The results are compared to 3D thermal TCAD simulations for a wide range of ambient temperature (Tamb), Pdiss and device dimensions. Finally, the scalability is validated through measurements of several transistor geometries as well as two different technologies and found to be in good agreement.","PeriodicalId":272941,"journal":{"name":"2013 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A scalable model for temperature dependent thermal resistance of SiGe HBTs\",\"authors\":\"A. Sahoo, S. Frégonèse, M. Weiss, C. Maneux, T. Zimmer\",\"doi\":\"10.1109/BCTM.2013.6798137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a geometry scalable approach for temperature dependent thermal resistance (RTH) calculations in trench-isolated SiGe heterojunction bipolar transistors (HBTs). The model is able to predict the RTH at any temperature and power dissipation (Pdiss). The temperature dependency is obtained by discretizing the heat flow region into n-number of elementary slices depending on the temperature gradient. RTHs of each slice are calculated using temperature dependent thermal conductivity. The results are compared to 3D thermal TCAD simulations for a wide range of ambient temperature (Tamb), Pdiss and device dimensions. Finally, the scalability is validated through measurements of several transistor geometries as well as two different technologies and found to be in good agreement.\",\"PeriodicalId\":272941,\"journal\":{\"name\":\"2013 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM)\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BCTM.2013.6798137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BCTM.2013.6798137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A scalable model for temperature dependent thermal resistance of SiGe HBTs
This paper presents a geometry scalable approach for temperature dependent thermal resistance (RTH) calculations in trench-isolated SiGe heterojunction bipolar transistors (HBTs). The model is able to predict the RTH at any temperature and power dissipation (Pdiss). The temperature dependency is obtained by discretizing the heat flow region into n-number of elementary slices depending on the temperature gradient. RTHs of each slice are calculated using temperature dependent thermal conductivity. The results are compared to 3D thermal TCAD simulations for a wide range of ambient temperature (Tamb), Pdiss and device dimensions. Finally, the scalability is validated through measurements of several transistor geometries as well as two different technologies and found to be in good agreement.