V. Jain, B. Zetterlund, P. Cheng, R. Camillo-Castillo, J. Pekarik, J. Adkisson, Qizhi Z. Liu, P. Gray, V. Kaushal, T. Kessler, D. Harame
{"title":"90nm SiGe HBTs的互热阻和自热阻研究","authors":"V. Jain, B. Zetterlund, P. Cheng, R. Camillo-Castillo, J. Pekarik, J. Adkisson, Qizhi Z. Liu, P. Gray, V. Kaushal, T. Kessler, D. Harame","doi":"10.1109/BCTM.2013.6798134","DOIUrl":null,"url":null,"abstract":"Impact of mutual thermal coupling on the performance of a single 90nm SiGe heterojunction bipolar transistor (HBT) due to the presence of power dissipating elements like other HBTs in near vicinity is presented in this paper. Mutual thermal resistance (Rth,mutual) has been computed as a function of spacing between the single HBT and a ring of HBTs surrounding the device. HBT structural design variations including device layout schemes, metal wire stack connected to the emitter, deep trench (DT) depth and emitter to DT spacing, for reduced self thermal resistance (Rth), have been explored in this paper. An updated thermal resistance model accounting for the heat flow through the metal wiring stack connected to the emitter is also reported.","PeriodicalId":272941,"journal":{"name":"2013 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Study of mutual and self-thermal resistance in 90nm SiGe HBTs\",\"authors\":\"V. Jain, B. Zetterlund, P. Cheng, R. Camillo-Castillo, J. Pekarik, J. Adkisson, Qizhi Z. Liu, P. Gray, V. Kaushal, T. Kessler, D. Harame\",\"doi\":\"10.1109/BCTM.2013.6798134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Impact of mutual thermal coupling on the performance of a single 90nm SiGe heterojunction bipolar transistor (HBT) due to the presence of power dissipating elements like other HBTs in near vicinity is presented in this paper. Mutual thermal resistance (Rth,mutual) has been computed as a function of spacing between the single HBT and a ring of HBTs surrounding the device. HBT structural design variations including device layout schemes, metal wire stack connected to the emitter, deep trench (DT) depth and emitter to DT spacing, for reduced self thermal resistance (Rth), have been explored in this paper. An updated thermal resistance model accounting for the heat flow through the metal wiring stack connected to the emitter is also reported.\",\"PeriodicalId\":272941,\"journal\":{\"name\":\"2013 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BCTM.2013.6798134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BCTM.2013.6798134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Study of mutual and self-thermal resistance in 90nm SiGe HBTs
Impact of mutual thermal coupling on the performance of a single 90nm SiGe heterojunction bipolar transistor (HBT) due to the presence of power dissipating elements like other HBTs in near vicinity is presented in this paper. Mutual thermal resistance (Rth,mutual) has been computed as a function of spacing between the single HBT and a ring of HBTs surrounding the device. HBT structural design variations including device layout schemes, metal wire stack connected to the emitter, deep trench (DT) depth and emitter to DT spacing, for reduced self thermal resistance (Rth), have been explored in this paper. An updated thermal resistance model accounting for the heat flow through the metal wiring stack connected to the emitter is also reported.