Lucas Matana Luza, D. Söderström, G. Tsiligiannis, H. Puchner, C. Cazzaniga, Ernesto Sánchez, A. Bosio, L. Dilillo
{"title":"研究辐射软误差对近似计算系统可靠性的影响","authors":"Lucas Matana Luza, D. Söderström, G. Tsiligiannis, H. Puchner, C. Cazzaniga, Ernesto Sánchez, A. Bosio, L. Dilillo","doi":"10.1109/DFT50435.2020.9250865","DOIUrl":null,"url":null,"abstract":"Approximate Computing (AxC) is a well-known paradigm able to reduce the computational and power overheads of a multitude of applications, at the cost of a decreased accuracy. Convolutional Neural Networks (CNNs) have proven to be particularly suited for AxC because of their inherent resilience to errors. However, the implementation of AxC techniques may affect the intrinsic resilience of the application to errors induced by Single Events in a harsh environment. This work introduces an experimental study of the impact of neutron irradiation on approximate computing techniques applied on the data representation of a CNN.","PeriodicalId":340119,"journal":{"name":"2020 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Investigating the Impact of Radiation-Induced Soft Errors on the Reliability of Approximate Computing Systems\",\"authors\":\"Lucas Matana Luza, D. Söderström, G. Tsiligiannis, H. Puchner, C. Cazzaniga, Ernesto Sánchez, A. Bosio, L. Dilillo\",\"doi\":\"10.1109/DFT50435.2020.9250865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Approximate Computing (AxC) is a well-known paradigm able to reduce the computational and power overheads of a multitude of applications, at the cost of a decreased accuracy. Convolutional Neural Networks (CNNs) have proven to be particularly suited for AxC because of their inherent resilience to errors. However, the implementation of AxC techniques may affect the intrinsic resilience of the application to errors induced by Single Events in a harsh environment. This work introduces an experimental study of the impact of neutron irradiation on approximate computing techniques applied on the data representation of a CNN.\",\"PeriodicalId\":340119,\"journal\":{\"name\":\"2020 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DFT50435.2020.9250865\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DFT50435.2020.9250865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Investigating the Impact of Radiation-Induced Soft Errors on the Reliability of Approximate Computing Systems
Approximate Computing (AxC) is a well-known paradigm able to reduce the computational and power overheads of a multitude of applications, at the cost of a decreased accuracy. Convolutional Neural Networks (CNNs) have proven to be particularly suited for AxC because of their inherent resilience to errors. However, the implementation of AxC techniques may affect the intrinsic resilience of the application to errors induced by Single Events in a harsh environment. This work introduces an experimental study of the impact of neutron irradiation on approximate computing techniques applied on the data representation of a CNN.