{"title":"用DPN技术直接书写金薄膜图案","authors":"C. Mihaela, Pachiu Cristina, Dediu Violeta","doi":"10.1109/SMICND.2018.8539804","DOIUrl":null,"url":null,"abstract":"Dip-pen nanolithography combined with wet-chemical etching has been used to generate gold nanostructures with desired shapes and sizes. Self-assembled monolayers of 16-mercaptohexadecanoic acid have been patterned by DPN in different shapes: dots, lines and complex shapes, interdigits electrodes. AFM and LFM were used to measure the roughness of gold surface and to examine the thiol deposition and binding quality. These results show that DPN can be used as alternative method to generate different patterns used for complex devices, biosensor, and optoelectronic devices.","PeriodicalId":247062,"journal":{"name":"2018 International Semiconductor Conference (CAS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct Writing Patterns for Gold Thin Film with DPN Technique\",\"authors\":\"C. Mihaela, Pachiu Cristina, Dediu Violeta\",\"doi\":\"10.1109/SMICND.2018.8539804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dip-pen nanolithography combined with wet-chemical etching has been used to generate gold nanostructures with desired shapes and sizes. Self-assembled monolayers of 16-mercaptohexadecanoic acid have been patterned by DPN in different shapes: dots, lines and complex shapes, interdigits electrodes. AFM and LFM were used to measure the roughness of gold surface and to examine the thiol deposition and binding quality. These results show that DPN can be used as alternative method to generate different patterns used for complex devices, biosensor, and optoelectronic devices.\",\"PeriodicalId\":247062,\"journal\":{\"name\":\"2018 International Semiconductor Conference (CAS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Semiconductor Conference (CAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMICND.2018.8539804\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Semiconductor Conference (CAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMICND.2018.8539804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Direct Writing Patterns for Gold Thin Film with DPN Technique
Dip-pen nanolithography combined with wet-chemical etching has been used to generate gold nanostructures with desired shapes and sizes. Self-assembled monolayers of 16-mercaptohexadecanoic acid have been patterned by DPN in different shapes: dots, lines and complex shapes, interdigits electrodes. AFM and LFM were used to measure the roughness of gold surface and to examine the thiol deposition and binding quality. These results show that DPN can be used as alternative method to generate different patterns used for complex devices, biosensor, and optoelectronic devices.