{"title":"循环热机械应力下金属化布局对老化探测器寿命的影响","authors":"G. Pham, M. Ritter, M. Pfost","doi":"10.1109/IRPS.2016.7574551","DOIUrl":null,"url":null,"abstract":"The influence of the layout on early warning detectors in BCD technologies for metallization failure under cyclic thermo-mechanical stress was investigated. Different LDMOS transistors, with narrow or wide metal fingers and with or without embedded detectors, were used. The test structures were repeatedly stressed by pronounced self-heating until failure (a short circuit) was detected. The results show that the layout of the on-chip metallization has a large impact on the lifetime. A significant influence of the detectors on the lifetime was also observed, in our case causing a reduction of more than a factor of two, but only for the test structure with narrow metal fingers. The experimental results are explained by an efficient numerical thermo-mechanical simulation approach, giving detailed insights into the strain distribution in the metal system. These results are important for aging detector design and, morever, for LDMOS on-chip metal layout in general.","PeriodicalId":172129,"journal":{"name":"2016 IEEE International Reliability Physics Symposium (IRPS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Influence of metallization layout on aging detector lifetime under cyclic thermo-mechanical stress\",\"authors\":\"G. Pham, M. Ritter, M. Pfost\",\"doi\":\"10.1109/IRPS.2016.7574551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The influence of the layout on early warning detectors in BCD technologies for metallization failure under cyclic thermo-mechanical stress was investigated. Different LDMOS transistors, with narrow or wide metal fingers and with or without embedded detectors, were used. The test structures were repeatedly stressed by pronounced self-heating until failure (a short circuit) was detected. The results show that the layout of the on-chip metallization has a large impact on the lifetime. A significant influence of the detectors on the lifetime was also observed, in our case causing a reduction of more than a factor of two, but only for the test structure with narrow metal fingers. The experimental results are explained by an efficient numerical thermo-mechanical simulation approach, giving detailed insights into the strain distribution in the metal system. These results are important for aging detector design and, morever, for LDMOS on-chip metal layout in general.\",\"PeriodicalId\":172129,\"journal\":{\"name\":\"2016 IEEE International Reliability Physics Symposium (IRPS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Reliability Physics Symposium (IRPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRPS.2016.7574551\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Reliability Physics Symposium (IRPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRPS.2016.7574551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Influence of metallization layout on aging detector lifetime under cyclic thermo-mechanical stress
The influence of the layout on early warning detectors in BCD technologies for metallization failure under cyclic thermo-mechanical stress was investigated. Different LDMOS transistors, with narrow or wide metal fingers and with or without embedded detectors, were used. The test structures were repeatedly stressed by pronounced self-heating until failure (a short circuit) was detected. The results show that the layout of the on-chip metallization has a large impact on the lifetime. A significant influence of the detectors on the lifetime was also observed, in our case causing a reduction of more than a factor of two, but only for the test structure with narrow metal fingers. The experimental results are explained by an efficient numerical thermo-mechanical simulation approach, giving detailed insights into the strain distribution in the metal system. These results are important for aging detector design and, morever, for LDMOS on-chip metal layout in general.